Behavior of toxic elements in agricultural and industrial vadose zone soils of three Ebro and Meuse river basin areas in the context of global climate change

2006 ◽  
Vol 70 (18) ◽  
pp. A373 ◽  
Author(s):  
L. Lucas ◽  
A. Joubert ◽  
F. Garrido ◽  
C. Joulian ◽  
D. Breeze ◽  
...  
2020 ◽  
Author(s):  
Andrea Castelletti ◽  
Matteo Giuliani ◽  
Jonathan Lamontagne ◽  
Mohamad Hejazi ◽  
Patrick Reed

Abstract Emerging climate change mitigation policies focus on the implementation of global measures relying on carbon prices to attain rapid emissions reductions, with limited consideration for the impacts of global policies at local scales. Here, we use the Zambezi River Basin in Southern Africa to demonstrate how local multisector dynamics across interconnected Water-Energy-Food (WEF) systems are impacted by global climate change mitigation policies. Our analysis provides quantitative evidence of the unintended vulnerabilities that emerge for this basin across a broad array of potential climate and socio-economic futures. Our results indicate that climate change mitigation policies related to land use change emissions can have negative side effects on local water demands, generating increased risks for failures across all the components of the WEF systems in the Zambezi River Basin. Analogous vulnerabilities could impact many river basins in Southern and Western Africa. It is critical to connect global climate change mitigation policies to local regional dynamics to better navigate the full range of possible future scenarios while supporting policy makers in prioritizing sustainable mitigation and adaptation solutions.


2013 ◽  
Vol 726-731 ◽  
pp. 3480-3485
Author(s):  
Jian Liu ◽  
Jian Qing Zhai ◽  
Hui Tao ◽  
Xu Chun Ye

The study explored global climate change influence on water resources in Yellow River basin. A HBV hydrological model was developed to simulate the rainfall-runoff relationship at the region. Importing the CCLM climate model data, runoff at Lijin station was obtained in 2000-2039. The results indicate: (1) the annual average runoff depth is 1213mm, runoff in summer is larger than in spring,autumn and winter. The water resources decrease in three months (March, April and Jun) and increase in other months. (2) for inter-annual variations, the water resources increases slightly, and increase trend is about 64.8mm/10a. Water resources are insufficient in 200-2016, and rise gradually from 2017. (3) for different decades, the water resources are lack relatively in 2001-2010 and 2011-2020, and the differences are-59.4mm and-76.0mm respectively. While, the water resources in 2021-2030 and 2031-2039 are abundant, and the differences are 90.6mm and 88.8mm respectively.


Water ◽  
2016 ◽  
Vol 8 (3) ◽  
pp. 91 ◽  
Author(s):  
Soojun Kim ◽  
Huiseong Noh ◽  
Jaewon Jung ◽  
Hwandon Jun ◽  
Hung Kim

Sign in / Sign up

Export Citation Format

Share Document