Oxygen isotopic variability associated with multiple stages of serpentinization, Duke Island Complex, southeastern Alaska

2009 ◽  
Vol 73 (20) ◽  
pp. 6298-6312 ◽  
Author(s):  
Joyashish Thakurta ◽  
Edward M. Ripley ◽  
Chusi Li
1986 ◽  
Vol 109 (3) ◽  
pp. 253-263 ◽  
Author(s):  
Yves Noack ◽  
Alain Decarreau ◽  
Alain Manceau

1998 ◽  
Vol 29 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Peter Raben ◽  
Wilfred H. Theakstone

Marked vertical variations of ions and oxygen isotopes were present in the snowpack at the glacier Austre Okstindbreen during the pre-melting phase in 1995 at sites between 825 m and 1,470 m above sea level. As the first meltwater percolated from the top of the pack, ions were moved to a greater depth, but the isotopic composition remained relatively unchanged. Ions continued to move downwards through the pack during the melting phase, even when there was little surface melting and no addition of liquid precipitation. The at-a-depth correlation between ionic concentrations and isotopic ratios, strong in the pre-melting phase, weakened during melting. In August, concentrations of Na+ and Mg2+ ions in the residual pack were low and vertical variations were slight; 18O enrichment had occurred. The difference of the time at which melting of the snowpack starts at different altitudes influences the input of ions and isotopes to the underlying glacier.


2020 ◽  
Vol 15 ◽  
Author(s):  
Athira K ◽  
Vrinda C ◽  
Sunil Kumar P V ◽  
Gopakumar G

Background: Breast cancer is the most common cancer in women across the world, with high incidence and mortality rates. Being a heterogeneous disease, gene expression profiling based analysis plays a significant role in understanding breast cancer. Since expression patterns of patients belonging to the same stage of breast cancer vary considerably, an integrated stage-wise analysis involving multiple samples is expected to give more comprehensive results and understanding of breast cancer. Objective: The objective of this study is to detect functionally significant modules from gene co-expression network of cancerous tissues and to extract prognostic genes related to multiple stages of breast cancer. Methods: To achieve this, a multiplex framework is modelled to map the multiple stages of breast cancer, which is followed by a modularity optimization method to identify functional modules from it. These functional modules are found to enrich many Gene Ontology terms significantly that are associated with cancer. Result and Discussion: predictive biomarkers are identified based on differential expression analysis of multiple stages of breast cancer. Conclusion: Our analysis identified 13 stage-I specific genes, 12 stage-II specific genes, and 42 stage-III specific genes that are significantly regulated and could be promising targets of breast cancer therapy. That apart, we could identify 29, 18 and 26 lncRNAs specific to stage I, stage II and stage III respectively.


Paleobiology ◽  
1999 ◽  
Vol 25 (3) ◽  
pp. 383-395 ◽  
Author(s):  
Cynthia E. Schneider ◽  
James P. Kennett

The origin of the Neogene planktonic foraminifer Globorotalia (Globoconella) pliozea in the subtropical southwest Pacific has been attributed to its isolation resulting from intensification of the Subtropical Divergence (Tasman Front). Oxygen isotopic analyses suggest that, although the Subtropical Divergence may have played a role, the evolution of Gr. (G.) pliozea was facilitated by depth segregation of Gr. (G.) conomiozea morphotypes (low and high conical) during an interval of near-surface warming and increasing thermal gradient. Oxygen isotopic analyses suggest that low conical morphotypes of Gr. (G.) conomiozea inhabited greater depths than high conical morphotypes. Low conical forms of Gr. (G.) conomiozea are considered ancestral to the low conical species, Gr. (G.) pliozea. Oxygen isotopes indicate that Gr. (G.) pliozea inhabited greater depths than its ancestor, Gr. (G.) conomiozea.These data are consistent with depth-parapatric and depth-allopatric models, but not with a sympatric model of speciation. In the allopatric model, reproduction at different water depths acts as a barrier between morphotypes. In the parapatric model, clinal variation along a depth gradient acts as a barrier between morphotypes living at the limits of the gradient. Depth segregation in both models results in genetic isolation and evolutionary divergence. Our data support a correlation between morphological evolution and habitat changes in the Globoconella clade, implying separation of populations as a driving force for morphological evolution.Ecological segregation of morphotypes and species may be related to morphology (height of the conical angle), based on the data from Gr. (G.) conomiozea and Gr. (G.) pliozea. However, morphological differences alone do not necessarily produce depth differences. Large morphological differences between Gr. (G.) pliozea and closely related Gr. (G.) puncticulata did not result in isotopic and therefore depth differences between these species. These species coexisted at the same water depths for nearly 1 m.y. Thus, it is unlikely that the extinction of Gr. (G.) pliozea in the middle Pliocene resulted from competition with Gr. (G.) puncticulata, as previously suggested.


2021 ◽  
Author(s):  
H.Y. Kitty Cheung ◽  
Michael E. Donaldson ◽  
Emilee R.M. Storfie ◽  
Kelsey L. Spence ◽  
Jessie L.O. Fetsch ◽  
...  

2021 ◽  
pp. 1-11
Author(s):  
Jason A. Rech ◽  
Jeffrey S. Pigati ◽  
Kathleen B. Springer ◽  
Stephanie Bosch ◽  
Jeffrey C. Nekola ◽  
...  

Abstract Recent studies have shown the oxygen isotopic composition (δ18O) of modern terrestrial gastropod shells is determined largely by the δ18O of precipitation. This implies that fossil shells could be used to reconstruct the δ18O of paleo-precipitation as long as the isotopic system, including the hydrologic pathways of the local watershed and the gastropod systematics, is well understood. In this study, we measured the δ18O values of 456 individual gastropod shells collected from paleowetland deposits in the San Pedro Valley, Arizona that range in age from ca. 29.1 to 9.8 ka. Isotopic differences of up to 2‰ were identified among the four taxa analyzed (Succineidae, Pupilla hebes, Gastrocopta tappaniana, and Vallonia gracilicosta), with Succineidae shells yielding the highest values and V. gracilicosta shells exhibiting the lowest values. We used these data to construct a composite isotopic record that incorporates these taxonomic offsets, and found shell δ18O values increased by ~4‰ between the last glacial maximum and early Holocene, which is similar to the magnitude, direction, and rate of isotopic change recorded by speleothems in the region. These results suggest the terrestrial gastropods analyzed here may be used as a proxy for past climate in a manner that is complementary to speleothems, but potentially with much greater spatial coverage.


Sign in / Sign up

Export Citation Format

Share Document