Effect of H2O on metal–silicate partitioning of Ni, Co, V, Cr, Mn and Fe: Implications for the oxidation state of the Earth and Mars

2016 ◽  
Vol 192 ◽  
pp. 97-121 ◽  
Author(s):  
V. Clesi ◽  
M.A. Bouhifd ◽  
N. Bolfan-Casanova ◽  
G. Manthilake ◽  
A. Fabbrizio ◽  
...  
Author(s):  
Bernard J Wood

Experimental metal–silicate partitioning data for Ni, Co, V, Cr, Nb, Mn, Si and W were used to investigate the geochemical consequences of a range of models for accretion and core formation on Earth. The starting assumptions were chondritic ratios of refractory elements in the Earth and the segregation of metal at the bottom of a magma ocean, which deepened as the planet grew and which had, at its base, a temperature close to the liquidus of the silicate. The models examined were as follows. (i) Continuous segregation from a mantle which is chemically homogeneous and which has a fixed oxidation state, corresponding to 6.26 per cent oxidized Fe. Although Ni, Co and W partitioning is consistent with chondritic ratios, the current V content of the silicate Earth cannot be reconciled with core segregation under these conditions of fixed oxidation state. (ii) Continuous segregation from a mantle which is chemically homogeneous but in which the Earth became more oxidized as it grew. In this case, the Ni, Co, W, V, Cr and Nb contents of core and mantle are easily matched to those calculated from the chondritic ratios of refractory elements. The magma ocean is calculated to maintain a thickness approximately 35 per cent of the depth to the core–mantle boundary in the accreting Earth, yielding a maximum pressure of 44 GPa. This model yields a Si content of the core of 5.7 per cent, in good agreement with cosmochemical estimates and with recent isotopic data. (iii) Continuous segregation from a mantle which is not homogeneous and in which the core equilibrates with a restricted volume of mantle at the base of the magma ocean. This is found to increase depth of the magma ocean by approximately 50 per cent. All of the other elements (except Mn) have partitioning consistent with chondritic abundances in the Earth, provided the Earth became, as before, progressively oxidized during accretion. (iv) Continuous segregation of metal from a crystal-melt mush. In this case, pressures decrease to a maximum of 31 GPa and it is extremely difficult to match the calculated mantle contents of the highly incompatible elements Nb and W to those observed. Progressive oxidation is required to fit the observed mantle contents of vanadium. All of the scenarios discussed above point to progressive oxidation having occurred as the Earth grew. The Earth appears to be depleted in Mn relative to the chondritic reference.


Author(s):  
D.J Frost ◽  
U Mann ◽  
Y Asahara ◽  
D.C Rubie

Siderophile elements are depleted in the Earth's mantle, relative to chondritic meteorites, as a result of equilibration with core-forming Fe-rich metal. Measurements of metal–silicate partition coefficients show that mantle depletions of slightly siderophile elements (e.g. Cr, V) must have occurred at more reducing conditions than those inferred from the current mantle FeO content. This implies that the oxidation state (i.e. FeO content) of the mantle increased with time as accretion proceeded. The oxygen fugacity of the present-day upper mantle is several orders of magnitude higher than the level imposed by equilibrium with core-forming Fe metal. This results from an increase in the Fe 2 O 3 content of the mantle that probably occurred in the first 1 Ga of the Earth's history. Here we explore fractionation mechanisms that could have caused mantle FeO and Fe 2 O 3 contents to increase while the oxidation state of accreting material remained constant (homogeneous accretion). Using measured metal–silicate partition coefficients for O and Si, we have modelled core–mantle equilibration in a magma ocean that became progressively deeper as accretion proceeded. The model indicates that the mantle would have become gradually oxidized as a result of Si entering the core. However, the increase in mantle FeO content and oxygen fugacity is limited by the fact that O also partitions into the core at high temperatures, which lowers the FeO content of the mantle. (Mg,Fe)(Al,Si)O 3 perovskite, the dominant lower mantle mineral, has a strong affinity for Fe 2 O 3 even in the presence of metallic Fe. As the upper mantle would have been poor in Fe 2 O 3 during core formation, FeO would have disproportionated to produce Fe 2 O 3 (in perovskite) and Fe metal. Loss of some disproportionated Fe metal to the core would have enriched the remaining mantle in Fe 2 O 3 and, if the entire mantle was then homogenized, the oxygen fugacity of the upper mantle would have been raised to its present-day level.


Author(s):  
Stein B Jacobsen ◽  
Michael C Ranen ◽  
Michael I Petaev ◽  
John L Remo ◽  
Richard J O'Connell ◽  
...  

Measurable variations in 182 W/ 183 W, 142 Nd/ 144 Nd, 129 Xe/ 130 Xe and 136 Xe Pu / 130 Xe in the Earth and meteorites provide a record of accretion and formation of the core, early crust and atmosphere. These variations are due to the decay of the now extinct nuclides 182 Hf, 146 Sm, 129 I and 244 Pu. The l82 Hf– 182 W system is the best accretion and core-formation chronometer, which yields a mean time of Earth's formation of 10 Myr, and a total time scale of 30 Myr. New laser shock data at conditions comparable with those in the Earth's deep mantle subsequent to the giant Moon-forming impact suggest that metal–silicate equilibration was rapid enough for the Hf–W chronometer to reliably record this time scale. The coupled 146 Sm– 147 Sm chronometer is the best system for determining the initial silicate differentiation (magma ocean crystallization and proto-crust formation), which took place at ca 4.47 Ga or perhaps even earlier. The presence of a large 129 Xe excess in the deep Earth is consistent with a very early atmosphere formation (as early as 30 Myr); however, the interpretation is complicated by the fact that most of the atmospheric Xe may be from a volatile-rich late veneer.


Author(s):  
M. L. Rivers ◽  
S. R. Sutton ◽  
S. Bajt ◽  
J. S. Delaney

The synchrotron x-ray fluorescence microprobe at bending magnet beamline X-26A at the National Synchrotron Light Source has been used for a number of years for geochemical trace element microanalysis using collimated white radiation. More recently an incident beam monochromator and 8:1 focusing mirror have been added. These optics permit the formation of a small (30-100 micron) intense beam of monochromatic radiation suitable for use in x-ray absorption spectroscopy, including both near edge (XANES) and extended fine structure (EXAFS) techniques. This system has been used to study a number of problems in the earth and environmental sciences, including: oxidation state of uranium in contaminated waste sites; oxidation state of Cr in olivine inclusions in diamonds from the Earth's mantle; oxidation state of Mn in wheat roots infected with the take-all disease. We report here some recent results obtained on studies of the oxidation state of Fe in cosmochemical systems.Oxygen fugacity is one of the most important parameters in determining the cosmochemical and geochemical evolution of a system.


2020 ◽  
Vol 221 (2) ◽  
pp. 1165-1181
Author(s):  
J Monteux ◽  
D Andrault ◽  
M Guitreau ◽  
H Samuel ◽  
S Demouchy

SUMMARY In its early evolution, the Earth mantle likely experienced several episodes of complete melting enhanced by giant impact heating, short-lived radionuclides heating and viscous dissipation during the metal/silicate separation. After a first stage of rapid and significant crystallization (Magma Ocean stage), the mantle cooling is slowed down due to the rheological transition, which occurs at a critical melt fraction of 40–50%. This transition first occurs in the lowermost mantle, before the mushy zone migrates toward the Earth's surface with further mantle cooling. Thick thermal boundary layers form above and below this reservoir. We have developed numerical models to monitor the thermal evolution of a cooling and crystallizing deep mushy mantle. For this purpose, we use a 1-D approach in spherical geometry accounting for turbulent convective heat transfer and integrating recent and solid experimental constraints from mineral physics. Our results show that the last stages of the mushy mantle solidification occur in two separate mantle layers. The lifetime and depth of each layer are strongly dependent on the considered viscosity model and in particular on the viscosity contrast between the solid upper and lower mantle. In any case, the full solidification should occur at the Hadean–Eoarchean boundary 500–800 Myr after Earth's formation. The persistence of molten reservoirs during the Hadean may favor the absence of early reliefs at that time and maintain isolation of the early crust from the underlying mantle dynamics.


Sign in / Sign up

Export Citation Format

Share Document