scholarly journals Herbaceous community species composition and productivity are affected by soil depth and funnel effect in a simulated karst experiment

2020 ◽  
Vol 22 ◽  
pp. e01033
Author(s):  
Yuan Liu ◽  
Juan Chen ◽  
Xiaojing Zhang ◽  
Qiaoyu Li ◽  
Yu Du ◽  
...  
1979 ◽  
Vol 57 (15) ◽  
pp. 1642-1659 ◽  
Author(s):  
J. Bissett ◽  
D. Parkinson

Temperature, moisture, available potassium, and soil pH were the most important abiotic variables influencing the distribution and community composition of soil fungi from three diverse alpine habitats. The major differences in species composition occurred among the sites. An ordination contrasting the sites, based on the species composition of the mycoflora, was correlated with a gradient contrasting temperature and moisture with potassium. The observed differences in species composition among the sites were concluded to have resulted from conflicting demands on the species for efficiency and adaptability. Relatively few species were isolated from the more exposed summit ridge site (2840 m). and these were probably genetically diverse species capable of adapting to environmental extremes. Alternatively, dominant species may be specialists adapted to limiting dimensions that are widely distributed in the environment. Dominant species at the drought-prone grassland site (1900 m) appeared adapted to low moisture, and those of the alpine meadow site (2530 m) to low temperature.Seasonal changes in mycoflora composition were related to changes in the moisture and temperature status of the soils, with low temperature limiting in the spring and low moisture in the fall. Chrysosporium pannorum and Penieillium janthinellum were adapted to combined low temperature and moisture. Cylindroearpon didymuin, Glioeladium deliquescens, Fusarium merismoides. Penicillium steckii, and Cylindrocarpon destructans occurred only in soils with a relatively high temperature–moisture status. Changes in mycoflora composition with soil depth were attributed to an environmental gradient combining temperature, moisture, and K without contrasts. Sterile fungi, apparently adapted to the adverse conditions of low temperature. moisture, and K. were dominant in the lower horizons at all three sites. Soil K appeared to be a limiting factor for many species restricted to the surface horizons, including the frequently isolated species Fusarium acuminatum. Penicillium janthinellum. Penicillium simplicissimum. Penicillium steckii. Phoma eupyrena. and Trichoderma liamatum.


1992 ◽  
Vol 70 (6) ◽  
pp. 1279-1291 ◽  
Author(s):  
J. W. Belcher ◽  
P. A. Keddy ◽  
P. M. Catling

Alvars are areas with a distinctive dry grassland vegetation growing in thin soil over level limestone, and they are documented in Scandinavia, the eastern United States, and central Canada. Ordination and classification analysis techniques were used to describe alvar vegetation in Canada at two scales: within one alvar and among four alvar sites. Within one alvar, changes in species composition corresponded to changes in soil depth and biomass. There were two main vegetation types: (i) alvar meadows with complete vegetation cover and (ii) rock flats with incomplete vegetation cover over limestone rock. Among alvars, species composition was related primarily to geographic location. The southern site was distinct from the eastern and northern sites. Relationships between soil depth, plant biomass, and vegetation could also be detected. At within and among alvar scales, tall perennial graminoids dominated sites with deep soil while small annuals and stress-tolerant perennials dominated shallow soil sites. Average biomass levels were strongly positively correlated with soil depth across vegetation types. Average species richness was curvilinearly related to biomass. Our results describe Canadian alvar vegetation and illustrate important differences among alvar sites, showing that a number of these sites need protection to conserve alvar vegetation. Key words: grassland, drought, soil depth, species richness, biomass, conservation.


2018 ◽  
Vol 97 (11) ◽  
pp. 1058-1063
Author(s):  
Irina Yu. Kirtsideli ◽  
D. Yu. Vlasov ◽  
M. S. Zelenskaya ◽  
E. P. Barantsevich ◽  
Yu. K. Novozhilov ◽  
...  

This article presents the results of mycological studies of soils, substrate and airborne fungi on the Vize island in the Kara Sea (one of the most northern settlements of Russia). Mycological analysis of samples from the Vize island showed the presence of microfungi in most of the studied samples. There is a domination of dark-colored fungi on anthropogenically introduced materials. Among the introduced microfungi a significant proportion of the species known as destructors of materials, as well as the conditional pathogens of humans. 59 species of microfungi were identified. 40 microfungi species were isolated from soils. 30 species were isolated from anthropogenic contaminated soils and 17 in control (“pure”) soils. There is a general tendency to the reduction the species diversity and the number of microfungi as the soil depth increases. In anthropogenic contaminated soils, not only the species composition changed, but also the dominant species. The calculation of mycological hazard indices (Im) showed critical values (more than 8) for microfungi complexes of anthropogenic contaminated soil. The obtained data indicate a qualitative difference in the complexes of microfungi in control and contaminated soils. 25 species of microfungi were isolated from artificial and natural materials. Dark-colored microfungi dominated the anthropogenic substrates. The predominant group of microfungi from artificial and natural materials were known as destructors of various materials and as human pathogens. The airborne fungi of the studied territories were characterized by low numbers and species composition. In general, the share of conditionally pathogenic microfungi in the studied habitats of the island Vize ranged from 33% to 75%. The obtained data testify of expediency to using the structure of microfungi complexes as an index the of anthropogenic impact on ecosystems of the Arctic.


2012 ◽  
Vol 60 (8) ◽  
pp. 735
Author(s):  
Robert M. Kooyman

Plant height determines a species’ position in the canopy and regulates access to light. Shifts in trait values for assemblages (plots) arrayed along abiotic gradients can reflect changes in species composition, and shifts in species trait values. Multivariate analysis was used to quantify the relationship of assemblage-level floristic composition to environmental gradients. Species trait values for maximum height, leaf area, seed size and wood density were quantified for woody species in the assemblage samples, and partitioned into within- and among-assemblage components to enable trait correlations to be identified, including in relation to abiotic gradients. Assemblages in upslope topographic positions had lower height, smaller leaves and higher wood density. Across the assemblages, shifts in species composition, decreasing canopy height and the position of smaller trees in the canopy were all linked to decreasing soil depth in upslope topographic positions. Regardless of stand height, the canopy position of most main canopy dominants remained largely unchanged in response to shifts in environmental gradients. In contrast, shorter-stature tree species retained height along the gradient and subsequently shifted from the subcanopy to the canopy as soil depth and site (plot) canopy height decreased. Within a community, height and position in the canopy can shift under differing environmental conditions.


2021 ◽  
Author(s):  
Yuan Liu ◽  
Xuli Ren ◽  
Qixiao Zhang ◽  
Qiaoyu Li ◽  
Chunyan She ◽  
...  

Author(s):  
J.N. Abedalrahman ◽  
R.J. Mansor ◽  
D.R. Abass

A field experiment was carried out in the field of the College of Agriculture / University of Wasit, located on longitude  45o   50o   33.5o   East and latitude 32o 29o 49.8o North, in Spring season of the agricultural season 2019, in order to estimate the water consumption of potato crop using SWRT technology and under the drip irrigation system. The experiment was designed according to Randomized Complete Block Design (RCBD) with three replications and four treatments that include of the SWRT treatment (the use of plastic films under the plant root area in an engineering style), and the treatment of vegetal fertilizer (using Petmos), organic fertilizer (sheep manure), and the control treatment . Potato tubers (Solanum tuberosum L.)  var. Burin was planted for spring season on 10/2/2019 at the soil depth of 5-10 cm. The highest reference water consumption for the potato crop during the season was calculated by Najeeb Kharufa, which was 663.03 mm. The highest actual water consumption for the potato crop during the season for the control treatment was 410.1 mm. The results showed increase in the values of the crop coefficient (Kc) in the stages of tubers formation and tubers filling stage as compared to the vegetative and ripening stages, ranged from 1.37-1.92 for the two stages of tubers formation and tubers filling. The SWRT treatment gave the highest water use efficiency during the season, was 3.46 kg m-3 .


2017 ◽  
Vol 52 (6) ◽  
pp. 1279-1286
Author(s):  
G.P. Kononenko ◽  
◽  
E.A. Piryazeva ◽  
E.V. Zotova ◽  
A.A. Burkin ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document