Transcriptional inhibition of steroidogenic factor 1 in vivo in Oreochromis niloticus increased weight and suppressed gonad development

Gene ◽  
2021 ◽  
pp. 146023
Author(s):  
Zhe-Ming Cao ◽  
Jun Qiang ◽  
Jun-Hao Zhu ◽  
Hong-Xia Li ◽  
Yi-Fan Tao ◽  
...  
2021 ◽  
Author(s):  
Zhe Cao ◽  
Jun Qiang ◽  
Jun Zhu ◽  
Hong Li ◽  
Yi Tao ◽  
...  

Abstract Steroidogenic factor 1 (sf1) is an important regulator of gonad development and function in mammals. However, study of sf1 in fish is limited to cloning and expression and in vitro experiments. Using antisense RNA we knockout transcription of the sf1 gene in Nile tilapia Oreochromis niloticus, and obtain experimental fish in vivo. We demonstrate that antisense RNA can silence sf1 transcription and protein expression, and report suppression of sf1 transcription to affect gonad development and external genitalia formation in Nile tilapia. We also report disfunction of retinal metabolism and fatty acid metabolism to be important causes of weight gain and gonad abnormality with sf1 suppression. The feasibility of using antisense RNA for gene editing in fish is verified, and a new way of studying gene function and performing biological breeding is presented.


2020 ◽  
Vol 223 (16) ◽  
pp. jeb214890
Author(s):  
Ebtesam Ali Barnawi ◽  
Justine E. Doherty ◽  
Patrícia Gomes Ferreira ◽  
Jonathan M. Wilson

ABSTRACTPotassium regulation is essential for the proper functioning of excitable tissues in vertebrates. The H+/K+-ATPase (HKA), which is composed of the HKα1 (gene: atp4a) and HKβ (gene: atp4b) subunits, has an established role in potassium and acid–base regulation in mammals and is well known for its role in gastric acidification. However, the role of HKA in extra-gastric organs such as the gill and kidney is less clear, especially in fishes. In the present study in Nile tilapia, Oreochromis niloticus, uptake of the K+ surrogate flux marker rubidium (Rb+) was demonstrated in vivo; however, this uptake was not inhibited with omeprazole, a potent inhibitor of the gastric HKA. This contrasts with gill and kidney ex vivo preparations, where tissue Rb+ uptake was significantly inhibited by omeprazole and SCH28080, another gastric HKA inhibitor. The cellular localization of this pump in both the gill and kidney was demonstrated using immunohistochemical techniques with custom-made antibodies specific for Atp4a and Atp4b. Antibodies against the two subunits showed the same apical ionocyte distribution pattern in the gill and collecting tubules/ducts in the kidney. Atp4a antibody specificity was confirmed by western blotting. RT-PCT was used to confirm the expression of both subunits in the gill and kidney. Taken together, these results indicate for the first time K+ (Rb+) uptake in O. niloticus and that HKA is implicated, as shown through the ex vivo uptake inhibition by omeprazole and SCH28080, verifying a role for HKA in K+ absorption in the gill's ionocytes and collecting tubule/duct segments of the kidney.


2021 ◽  
pp. 1-25
Author(s):  
Muhammad Amin ◽  
Masarrat Yousuf ◽  
Mohammad Attaullah ◽  
Naveed Ahmad ◽  
Mohamad Nor Azra ◽  
...  

Endocrinology ◽  
2019 ◽  
Vol 160 (4) ◽  
pp. 817-826 ◽  
Author(s):  
Marie France Bouchard ◽  
Francis Bergeron ◽  
Jasmine Grenier Delaney ◽  
Louis-Mathieu Harvey ◽  
Robert S Viger

Abstract GATA4 is an essential transcriptional regulator required for gonadal development, differentiation, and function. In the developing testis, proposed GATA4-regulated genes include steroidogenic factor 1 (Nr5a1), SRY-related HMG box 9 (Sox9), and anti-Müllerian hormone (Amh). Although some of these genes have been validated as genuine GATA4 targets, it remains unclear whether GATA4 is a direct regulator of endogenous Amh transcription. We used a CRISPR/Cas9-based approach to specifically inactivate or delete the sole GATA-binding motif of the proximal mouse Amh promoter. AMH mRNA and protein levels were assessed at developmental time points corresponding to elevated AMH levels: fetal and neonate testes in males and adult ovaries in females. In males, loss of GATA binding to the Amh promoter significantly reduced Amh expression. Although the loss of GATA binding did not block the initiation of Amh transcription, AMH mRNA and protein levels failed to upregulate in the developing fetal and neonate testis. Interestingly, adult male mice presented no anatomical anomalies and had no evidence of retained Müllerian duct structures, suggesting that AMH levels, although markedly reduced, were sufficient to masculinize the male embryo. In contrast to males, GATA binding to the Amh promoter was dispensable for Amh expression in the adult ovary. These results provide conclusive evidence that in males, GATA4 is a positive modulator of Amh expression that works in concert with other key transcription factors to ensure that the Amh gene is sufficiently expressed in a correct spatiotemporal manner during fetal and prepubertal testis development.


2020 ◽  
Vol 26 (7) ◽  
pp. 532-548 ◽  
Author(s):  
Chunmei Mi ◽  
Bin Ye ◽  
Zhou Gao ◽  
Jinzhi Du ◽  
Ruizhen Li ◽  
...  

Abstract Pre-eclampsia (PE), which results from abnormal placentation, is a primary cause of maternal and neonatal morbidity and mortality. However, the causes of abnormal development of the placenta remain poorly understood. BHLHE40 is a transcriptional repressor in response to hypoxia. Bioinformatics analysis demonstrated that BHLHE40 negatively regulates miR-196a-5p expression, which may decrease miR-196a-5p to target SNX16. Since SNX16 exerts an inhibitory effect on cell migration, it may disrupt trophoblast cell migration in placentation. Therefore, the objective of this study was to explore a possible role of the BHLHE40/miR-196a-5p/SNX16 axis in PE pathogenesis. BHLHE40, miR-196a-5p and SNX16 mRNA and/or protein levels were detected in PE and normal placenta tissues. PE models in vitro and in vivo were constructed by culturing trophoblasts under hypoxia and reducing the uterine perfusion pressure in pregnant C57/BL6N mice, respectively. BHLHE40 and SNX16 were upregulated in PE placenta, while miR-196a-5p was downregulated. Knockdown of BHLHE40 reversed miR-196a-5p expression in trophoblasts under hypoxia, and upregulation of miR-196a-5p inhibited SNX16 expression. As indicated by ChIP assay, BHLHE40 bound to the promoter of the miR-196a-5p gene; luciferase reporter analysis showed that miR-196a-5p could bind to the 3ʹ-untranslated region of SNX16 mRNA. Knockdown of either BHLHE40 or SNX16, or an increase in miR-196a-5p, restored cell viability, migration, invasion and matrix metalloprotein (MMP)-2 and MMP-9 expression under hypoxia. BHLHE40 knockdown also alleviated PE symptoms in pregnant C57/BL6N mice. This study supports involvement of the BHLHE40/miR-196a-5p/SNX16 axis in PE pathogenesis; Proper adjustment of the BHLHE40/miR-196a-5p/SNX16 axis is able to attenuate PE symptoms.


Endocrinology ◽  
2007 ◽  
Vol 148 (8) ◽  
pp. 3704-3710 ◽  
Author(s):  
Susan Y. Park ◽  
Minghan Tong ◽  
J. Larry Jameson

Testicular Leydig cells produce testosterone and provide the hormonal environment required for male virilization and spermatogenesis. In utero, fetal Leydig cells (FLCs) are necessary for the development of the Wolffian duct and male external genitalia. Steroidogenic factor 1 (Sf1) is a transcriptional regulator of hormone biosynthesis genes, thus serving a central role in the Leydig cell. Desert hedgehog (Dhh), a Sertoli cell product, specifies the FLC lineage in the primordial gonad through a paracrine signaling mechanism. Postnatally, FLCs are replaced in the testis by morphologically distinct adult Leydig cells (ALCs). To study a putative interaction between Sf1 and Dhh, we crossed Sf1 heterozygous mutant mice with Dhh homozygous null mice to test the function of these two genes in vivo. All of the compound Sf1+/−; Dhh−/− mutants failed to masculinize and were externally female. However, embryonic gonads contained anastomotic testis cords with Sertoli cells and germ cells, indicating that sex reversal was not attributable to a fate switch of the early gonad. Instead, external feminization was attributable to the absence of differentiated FLCs in XY compound mutant mice. ALCs also failed to develop, suggesting either a dependence of ALCs on the prenatal establishment of Leydig cell precursors or that Sf1 and Dhh are both required for ALC maturation. In summary, this study provides genetic evidence that combinatorial expression of the paracrine factor Dhh and nuclear transcription factor Sf1 is required for Leydig cell development.


Sign in / Sign up

Export Citation Format

Share Document