scholarly journals Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soils

Geoderma ◽  
2008 ◽  
Vol 144 (1-2) ◽  
pp. 395-404 ◽  
Author(s):  
Antoine Stevens ◽  
Bas van Wesemael ◽  
Harm Bartholomeus ◽  
Damien Rosillon ◽  
Bernard Tychon ◽  
...  
Weed Science ◽  
1992 ◽  
Vol 40 (1) ◽  
pp. 155-160 ◽  
Author(s):  
Jeff S. Graham ◽  
Jeffery S. Conn

Adsorption and desorption of metribuzin and metolachlor were studied for 0- to 15- and 30- to 45-cm soil depths and at 5 and 28 C temperatures for two subarctic Alaskan agricultural soils. Surface soils had five to eight times the organic carbon content of deeper soils and had lower Freundlich isotherm slopes (1/n) for both herbicides. Surface soil Freundlich coefficients (Kf) were affected by both soil type and equilibration temperature, with soil type accounting for greater than 80% of the variation in Kf. Surface soil mean Kfvalues ranged from 1.5 to 2.4 for metribuzin and 4.4 to 9.2 for metolachlor. For soils from the 30- to 45-cm depth, neither soil type nor temperature affected Kf. Isotherm slopes for desorption were less than adsorption, indicating hysteresis. Regressions between desorption Kfand maximum herbicide adsorbed prior to desorption were highly significant with coefficients of determination (r2) between 0.50 and 0.99.


Soil Research ◽  
2000 ◽  
Vol 38 (5) ◽  
pp. 1005 ◽  
Author(s):  
A. Clough ◽  
J. O. Skjemstad

The amount of organic carbon physically protected by entrapment within aggregates and through polyvalent cation–organic matter bridging was determined on non-calcareous and calcareous soils. The composition of organic carbon in whole soils and <53 m soil fractions was determined by 13C NMR analysis. High energy photo-oxidation was carried out on <53 m fractions and results from the NMR spectra showed 17–40% of organic carbon was in a condensed aromatic form, most likely charcoal (char). The concept that organic material remaining after photo-oxidation may be physically protected within aggregates was investigated by treating soils with a mild acid prior to photo-oxidation. More organic material was protected in the calcareous than the non-calcareous soils, regardless of whether the calcium occurred naturally or was an amendment. Acid treatment indicated that the presence of exchangeable calcium reduced losses of organic material upon photo-oxidation by about 7% due to calcium bridging. These results have implications for N fertiliser recommendations based upon organic carbon content. Firstly, calcium does not impact upon degradability of organic material to an extent likely to affect N fertiliser recommendations. Secondly, standard assessment techniques overestimate active organic carbon content in soils with high char content.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9870
Author(s):  
Ke Song ◽  
Lijuan Sun ◽  
Weiguang Lv ◽  
Xianqing Zheng ◽  
Yafei Sun ◽  
...  

Background To promote straw degradation, we inoculated returned farmland straw with earthworms (Pheretima guillelmi). Increasing the number of earthworms may generally alter soil organic carbon (SOC) dynamics and the biological activity of agricultural soils. Methods We performed soil mesocosm experiments with and without earthworms to assess the decomposition and microbial mineralization of returned straw and soil enzyme activity across different time periods. Results When earthworms were present in soil, the surface residues were completely consumed during the first four weeks, but when earthworms were absent, most of the residues remained on the soil surface after 18 weeks. On day 28, the SOC content was significantly higher in the treatment where both earthworms and residue had been added. The SOC content was lower in the treatment where earthworms but no residue had been added. The organic carbon content in water-stable macroaggregates showed the same trend. During the first 14 weeks, the soil basal respiration was highest in the treatments with both residues and earthworms. From weeks 14 to 18, basal respiration was highest in the treatments with residues but without earthworms. We found a significant positive correlation between soil basal respiration and soil dissolved organic carbon content. Earthworms increased the activity of protease, invertase, urease and alkaline phosphatase enzymes, but decreased β-cellobiohydrolase, β-glucosidase and xylosidase activity, as well as significantly reducing ergosterol content. Conclusion The primary decomposition of exogenous rice residues was mainly performed by earthworms. Over a short period of time, they converted plant carbon into soil carbon and increased SOC. The earthworms played a key role in carbon conversion and stabilization. In the absence of exogenous residues, earthworm activity accelerated the decomposition of original organic carbon in the soil, reduced SOC, and promoted carbon mineralization.


Sign in / Sign up

Export Citation Format

Share Document