Farmer knowledge of the relationships among soil macrofauna, soil quality and tree species in a smallholder agroforestry system of western Honduras

Geoderma ◽  
2012 ◽  
Vol 189-190 ◽  
pp. 186-198 ◽  
Author(s):  
N. Pauli ◽  
E. Barrios ◽  
A.J. Conacher ◽  
T. Oberthür
2021 ◽  
Vol 10 (10) ◽  
pp. e580101019144
Author(s):  
Rafaela Martins da Silva ◽  
Rakiely Martins da Silva ◽  
Sandra Santana de Lima ◽  
Jianne Rafaela Mazzini de Souza ◽  
Jheny Kesley Mazzini de Souza ◽  
...  

The objective of this study was to evaluate soil macrofauna as a bioindicator of soil quality in successional agroforestry systems and secondary forests. The study was conducted in the southern lower region of Bahia in Brazil, in two areas: a successional agroforestry system (AFS18) and native forest (NF).  AFS18 consists of two species: mahogany (Khaya ivorensis and Khaya grandifoliola), açaí (Euterpe oleracea), cacao (Theobroma cacau) and banana (Musa spp.).  Sampling was carried out in the dry (June) and rainy (October) seasons of 2019, and eight soil monoliths were collected in both areas.  A total of 889 individuals from the soil macrofauna were sampled. The highest frequency (RF) of taxons occurred in NF in the rainy season, and the groups that stood out were: Oligochaeta with 42% FR in ASF18, Formicide with 33.9% in NF and Isoptera with 58% in AFS18. The macrofauna structure of the soil varied according to the time of collection. The density of macrofauna individuals differed between areas only in the dry season. The highest number of ind.m² was observed in the area NF (378) when compared to ASF18 (196). TOC, Mg2+, Al3+ and CTC were related to AF on both occasions of collection and AFS18 in the rainy season, K+, P and pH were associated with AFS18 in the dry season. The diversity, equitability and richness of the soil macrofauna was greater in AF area. HFA18 in the rainy season was similar to NF, favoring colonization of the area by soil macrofauna organisms.


2014 ◽  
Vol 38 (1) ◽  
pp. 50-59 ◽  
Author(s):  
Biana Harumi Kuwano ◽  
Adriana Knob ◽  
Dáfila Santos Lima Fagotti ◽  
Nagib Jorge Melém Júnior ◽  
Leandro Godoy ◽  
...  

Sustainable use of soil, maintaining or improving its quality, is one of the goals of diversification in farmlands. From this point of view, bioindicators associated with C, N and P cycling can be used in assessments of land-use effects on soil quality. The aim of this study was to investigate chemical, microbiological and biochemical properties of soil associated with C, N and P under different land uses in a farm property with diversified activity in northern Parana, Brazil. Seven areas under different land uses were assessed: fragment of native Atlantic Forest; growing of peach-palm (Bactrys gasipaes); sugarcane ratoon (Saccharum officinarum) recently harvested, under renewal; growing of coffee (Coffea arabica) intercropped with tree species; recent reforestation (1 year) with native tree species, previously under annual crops; annual crops under no-tillage, rye (Cecale cereale); secondary forest, regenerated after abandonment (for 20 years) of an avocado (Persea americana) orchard. The soil under coffee, recent reforestation and secondary forest showed higher concentrations of organic carbon, but microbial biomass and enzyme activities were higher in soils under native forest and secondary forest, which also showed the lowest metabolic coefficient, followed by the peach-palm area. The lowest content of water-dispersible clay was found in the soil under native forest, differing from soils under sugarcane and secondary forest. Soil cover and soil use affected total organic C contents and soil enzyme and microbial activities, such that more intensive agricultural uses had deeper impacts on the indicators assessed. Calculation of the mean soil quality index showed that the secondary forest was closest to the fragment of native forest, followed by the peach-palm area, coffee-growing area, annual crop area, the area of recent reforestation and the sugarcane ratoon area.


2016 ◽  
Vol 15 (3) ◽  
pp. 226
Author(s):  
Rajendra Prasad ◽  
Ram Newaj ◽  
V.D. Tripathi ◽  
N.K. Saroj ◽  
Prashant Singh ◽  
...  

Land ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 856
Author(s):  
Yosefin Ari Silvianingsih ◽  
Kurniatun Hairiah ◽  
Didik Suprayogo ◽  
Meine van Noordwijk

Increased agricultural use of tropical peatlands has negative environmental effects. Drainage leads to landscape-wide degradation and fire risks. Livelihood strategies in peatland ecosystems have traditionally focused on transitions from riverbanks to peatland forests. Riparian ‘Kaleka’ agroforests with more than 100 years of history persist in the peatlands of Central Kalimantan (Indonesia), where large-scale open-field agricultural projects have dramatically failed. Our field study in a Dayak Ngaju village on the Kahayan river in the Pulang Pisau district involved characterizing land uses, surveying vegetation, measuring soil characteristics, and monitoring groundwater during a period of 16 months. We focused on how local practices and farmer knowledge compare with standard soil fertility (physical, chemical, biological) measurements to make meaningful assessments of risks and opportunities for sustainable land use within site-specific constraints. The Kaleka agroforests around a former settlement and sacred historical meaning are species-rich agroforests dominated by local fruit trees and rubber close to the riverbank. They function well with high wet-season groundwater tables (up to −15 cm) compatible with peatland restoration targets. Existing soil quality indices rate the soils, with low soil pH and high Alexch, as having low suitability for most annual crops, but active tree regeneration in Kaleka shows sustainability.


2018 ◽  
Vol 10 (1) ◽  
pp. 30-36
Author(s):  
Kavita Satyawali ◽  
Sumit Chaturvedi ◽  
Neema Bisht ◽  
V.C. Dhyani

A field trial based Agroforestry system was established at Pantnagar during Rabi season 2012-13 for predicting the effect of spacing on growth and yield of wheat (Triticum aestivum L.) under Eucalyptus camaldulensis and Melia azedarach. The experiment was carried out in split-plot design consisting of two tree species in main plot, viz, Eucalyptus camaldulensis and Melia azedarch and four spacing treatments in sub-plot viz, 3.0m×1.0m, 3.0m×1.5m, 3.0m×2.0m and 3.0m×2.5m with three replications. The wheat crop variety“UP-2338” was sown on December 06, 2012 and harvested on April 27, 2013. Among the tree species, the maximum (15.1 q /ha) and significantly higher grain yield with 21.8% increment was recorded under Melia as compare to Eucalyptus. Whereas, among the different spacings, the wheat growth in terms of dry biomass at 120 DAS (495.4/m2 ), yield attributes and yield in terms of grain (16.0 q/ha), straw (29.4 q/ha) and biological yield (45.4 q/ha) under Melia was significantly higher at 3 × 2.5 m spacing as compared to other planting density. The correlation coefficient (r) studies exhibited that wheat growth and yield attributing characteristics shows significantly (p<0.05) high degree (r=0.75 to 1) positive correlation with each other. The investigation was done to find out the proper planting density for intercropping of wheat with tree species without comprising the wheat growth and enhancing its sustainability.


Sign in / Sign up

Export Citation Format

Share Document