Effects of changing C and N availability on soil respiration dynamics in a temperate grassland in northern China

Geoderma ◽  
2018 ◽  
Vol 329 ◽  
pp. 20-26 ◽  
Author(s):  
Yunlong He ◽  
Yuchun Qi ◽  
Yunshe Dong ◽  
Qin Peng ◽  
Shufang Guo ◽  
...  
2016 ◽  
Vol 49 (5) ◽  
pp. 510-516
Author(s):  
Byong-Gu Ko ◽  
Chang-Hoon Lee ◽  
Myung-Sook Kim ◽  
Gun-Yeob Kim ◽  
Seong-Jin Park ◽  
...  

2016 ◽  
Vol 569-570 ◽  
pp. 1466-1477 ◽  
Author(s):  
Qinpu Luo ◽  
Jirui Gong ◽  
Zhanwei Zhai ◽  
Yan Pan ◽  
Min Liu ◽  
...  

Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 544 ◽  
Author(s):  
Bo Zhao ◽  
Yan Geng ◽  
Jing Cao ◽  
Lu Yang ◽  
Xiuhai Zhao

Increasing atmospheric nitrogen (N) deposition has profound effects on carbon (C) cycling in forest ecosystems. As an important part of belowground C dynamics, soil respiration is potentially affected by changing N availability. However, the responses of total soil respiration (RST) and its three components, soil respiration derived from plant roots (RSR), root-free soil (RSS) and the litter layer (RSL), to such N enrichment remains poorly understood. To assess the effects of N enrichment on soil respiration components, three levels of N addition, namely low (LN, 50 kg N ha−1 year−1), medium (MN, 100 kg N ha−1 year−1) and high (HN, 150 kg N ha−1 year−1), were conducted over five growing seasons from 2011 to 2015 in a temperate Chinese pine (Pinus tabulaeformis) forest in northern China. A control plot without N addition (CK) was also established. The five-year mean annual rate of RST was 2.18 ± 0.43 μmol m−2 s−1, and the contributions of RSR, RSS and RSL were 8.8 ± 3.1%, 82.2 ± 4.5% and 9.0 ± 5.5%, respectively. Compared with CK, RST was significantly increased by 16.5% in the HN plots, but not in the LN or MN treatments. RSS was significantly decreased by 18.1%, 26.6% and 18.4% in the LN, MN and HN plots, respectively, due to the reduction of both microbial biomass carbon (MBC) and enzyme activity. In contrast, RSR was increased by more than twice under the MN treatment, which promoted root growth and activity (higher fine root biomass and N concentration). A significant elevation in RSL was only detected in the HN plots, where the increased litter input enhanced litter decomposition and hence RSL. Our findings clearly demonstrated that N addition of different intensities had different effects on soil components. In particular, the above- and belowground components of heterotrophic respiration, RSL and RSR, showed contrasting responses to high level addition of N. Thus, we highlight that the response of soil respiration components to N addition should be examined individually. Our results may contribute to a better understanding of soil respiration dynamics under future N scenarios, and have important implications in forest management.


1993 ◽  
Vol 23 (7) ◽  
pp. 1275-1285 ◽  
Author(s):  
Janna Pietikäinen ◽  
Hannu Fritze

During a 3-year study, soil microbial biomass C and N, length of the fungal hyphae, soil respiration, and the percent mass loss of needle litter were recorded in coniferous forest soil humus layers following a prescribed burning (PB) treatment or a forest fire simulation (FF) treatment (five plots per treatment). Unburned humus from adjacent plots served as controls (PC and FC, respectively). Prescribed burning was more intensive than the forest fire, and this was reflected in all the measurements taken. The amounts of microbial biomass C and N, length of fungal hyphae, and soil respiration in the PB area did not recover to their controls levels, whereas unchanged microbial biomass N and recovery of the length of the fungal hyphae to control levels were observed in the FF area. The mean microbial C/N ratio was approximately 7 in all the areas, which reflected the C/N ratio of the soil microbial community. Deviation from this mean value, as observed during the first three samplings from the PB area (3, 18, and 35 days after fire treatment), suggested a change in the composition of the microbial community. Of the two treated areas, the decrease in soil respiration (laboratory measurements) was much more pronounced in the PB area. However, when the humus samples from both areas were adjusted to 60% water holding capacity, no differences in respiration capacity were observed. The drier humus, due to higher soil temperatures, of the PB area is a likely explanation for the low soil respiration. Lower soil respiration was not reflected in lower litter decomposition rates of the PB area, since there was a significantly higher needle litter mass loss during the first year in the PB area followed by a decline to the control level during the second year. Consistently higher mass losses were recorded in the FC area than in the FF area.


2009 ◽  
Vol 41 (8) ◽  
pp. 1605-1611 ◽  
Author(s):  
Jeff S. Coyle ◽  
Paul Dijkstra ◽  
Richard R. Doucett ◽  
Egbert Schwartz ◽  
Stephen C. Hart ◽  
...  

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 151
Author(s):  
Pramod Jha ◽  
Kuntal M. Hati ◽  
Ram C. Dalal ◽  
Yash P. Dang ◽  
Peter M. Kopittke ◽  
...  

In subtropical regions, we have an incomplete understanding of how long-term tillage, stubble, and nitrogen (N) fertilizer management affects soil biological functioning. We examined a subtropical site managed for 50 years using varying tillage (conventional till (CT) and no-till (NT)), stubble management (stubble burning (SB) and stubble retention (SR)), and N fertilization (0 (N0), 30 (N30), and 90 (N90) kg ha−1 y−1) to assess their impact on soil microbial respiration, easily extractable glomalin-related soil protein (EEGRSP), and N mineralization. A significant three-way tillage × stubble × N fertilizer interaction was observed for soil respiration, with NT+SB+N0 treatments generally releasing the highest amounts of CO2 over the incubation period (1135 mg/kg), and NT+SR+N0 treatments releasing the lowest (528 mg/kg). In contrast, a significant stubble × N interaction was observed for both EEGRSP and N mineralization, with the highest concentrations of both EEGRSP (2.66 ± 0.86 g kg−1) and N mineralization (30.7 mg/kg) observed in SR+N90 treatments. Furthermore, N mineralization was also positively correlated with EEGRSP (R2 = 0.76, p < 0.001), indicating that EEGRSP can potentially be used as an index of soil N availability. Overall, this study has shown that SR and N fertilization have a positive impact on soil biological functioning.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lubos Polerecky ◽  
Takako Masuda ◽  
Meri Eichner ◽  
Sophie Rabouille ◽  
Marie Vancová ◽  
...  

Unicellular nitrogen fixing cyanobacteria (UCYN) are abundant members of phytoplankton communities in a wide range of marine environments, including those with rapidly changing nitrogen (N) concentrations. We hypothesized that differences in N availability (N2 vs. combined N) would cause UCYN to shift strategies of intracellular N and C allocation. We used transmission electron microscopy and nanoscale secondary ion mass spectrometry imaging to track assimilation and intracellular allocation of 13C-labeled CO2 and 15N-labeled N2 or NO3 at different periods across a diel cycle in Cyanothece sp. ATCC 51142. We present new ideas on interpreting these imaging data, including the influences of pre-incubation cellular C and N contents and turnover rates of inclusion bodies. Within cultures growing diazotrophically, distinct subpopulations were detected that fixed N2 at night or in the morning. Additional significant within-population heterogeneity was likely caused by differences in the relative amounts of N assimilated into cyanophycin from sources external and internal to the cells. Whether growing on N2 or NO3, cells prioritized cyanophycin synthesis when N assimilation rates were highest. N assimilation in cells growing on NO3 switched from cyanophycin synthesis to protein synthesis, suggesting that once a cyanophycin quota is met, it is bypassed in favor of protein synthesis. Growth on NO3 also revealed that at night, there is a very low level of CO2 assimilation into polysaccharides simultaneous with their catabolism for protein synthesis. This study revealed multiple, detailed mechanisms underlying C and N management in Cyanothece that facilitate its success in dynamic aquatic environments.


Sign in / Sign up

Export Citation Format

Share Document