Towards predicting the soil-specific threshold electrolyte concentration of soil as a reduction in saturated hydraulic conductivity: The role of clay net negative charge

Geoderma ◽  
2019 ◽  
Vol 337 ◽  
pp. 122-131 ◽  
Author(s):  
J.McL. Bennett ◽  
A. Marchuk ◽  
S. Marchuk ◽  
S.R. Raine
1990 ◽  
Vol 21 (2) ◽  
pp. 119-132 ◽  
Author(s):  
Johnny Fredericia

The background for the present knowledge about hydraulic conductivity of clayey till in Denmark is summarized. The data show a difference of 1-2 orders of magnitude in the vertical hydraulic conductivity between values from laboratory measurements and field measurements. This difference is discussed and based on new data, field observations and comparison with North American studies, it is concluded to be primarily due to fractures in the till.


Geoderma ◽  
2015 ◽  
Vol 243-244 ◽  
pp. 58-68 ◽  
Author(s):  
Athanasios (Thanos) N. Papanicolaou ◽  
Mohamed Elhakeem ◽  
Christopher G. Wilson ◽  
C. Lee Burras ◽  
Larry T. West ◽  
...  

Soil Research ◽  
1992 ◽  
Vol 30 (5) ◽  
pp. 565 ◽  
Author(s):  
NS Jayawardane

Equivalent salt solutions series have been previously defined as solutions with combinations of sodium absorption ratio (SAR) and electrolyte concentration (E,) producing the same extent of clay swelling in a given soil. These equivalent salt solutions series values have yielded satisfactory predictions of changes in saturated hydraulic conductivity, with changes in salt solution composition and concentrations. In the present study, previously published data on changes in saturated and unsaturated hydraulic conductivities of Gilat soil in salt solutions of cationic ratio 0-50 (mmol dm-3)1/2 and electrolyte concentration 2-50 (m.e. dm-3) were used to compare the equivalent salt solution series values for hydraulic conductivities at different water contents. The equivalent salt solution series causing a given change in saturated hydraulic conductivity of a loamy Gilat soil were derived. These equivalent salt solution values were used to predict the unsaturated hydraulic conductivities of this soil at low water contents. Predictions of unsaturated conductivity at relative water contents (�) ranging from 0.80 to 0.20 agreed closely with the measured values. Coefficients log a1 and b1 for Gilat soil, in the equation log Ec = log a1+b1 log SAR, relating the Ec and SAR values of each equivalent salt solutions series were determined at � values between 1.00 and 0.20. The relationship between log a1 and bl was similar at all water contents, in agreement with the equivalent salt solutions concept. Therefore, equivalent salt solution parameters derived from saturated hydraulic conductivity measurements could be used to predict changes in unsaturated conductivities and hence flow rates of saline water under specified boundary conditions.


2019 ◽  
Vol 6 (04) ◽  
Author(s):  
MINAKSHI SERAWAT ◽  
V K PHOGAT ◽  
ANIL Abdul KAPOOR ◽  
VIJAY KANT SINGH ◽  
ASHA SERAWAT

Soil crust strength influences seedling emergence, penetration and morphology of plant roots, and, consequently, crop yields. A study was carried out to assess the role of different soil properties on crust strength atHisar, Haryana, India. The soil samples from 0-5 and 5-15 cm depths were collected from 21 locations from farmer’s fields, having a wide range of texture.Soil propertieswere evaluated in the laboratory and theirinfluence on the modulus of rupture (MOR), which is the measure of crust strength, was evaluated.The MOR of texturally different soils was significantly correlated with saturated hydraulic conductivity at both the depths. Dispersion ratio was found to decrease with an increase in fineness of the texture of soil and the lowest value was recorded in silty clay loam soil,which decreased with depth. The modulus of rupture was significantly negatively correlative with the dispersion ratio.There was no role of calcium carbonate in influencing the values of MOR of soils. Similarly,the influence of pH, EC and SAR of soil solution on MOR was non-significant.A perusal of thevalues of the correlations between MOR and different soil properties showed that the MOR of soils of Haryana are positively correlated with silt + clay (r = 0.805) followed by water-stable aggregates (r = 0.774), organic carbon (r = 0.738), silt (r = 0.711), mean weight diameter (r = 0.608) and clay (r = 0.593) while negatively correlated with dispersion ratio (r = - 0.872), sand (r = -0.801) and hydraulic conductivity (r = -0.752) of soils.


2019 ◽  
Vol 34 (2) ◽  
pp. 237-243
Author(s):  
Jari Hyväluoma ◽  
Mari Räty ◽  
Janne Kaseva ◽  
Riikka Keskinen

2021 ◽  
Vol 13 (13) ◽  
pp. 7301
Author(s):  
Marcin K. Widomski ◽  
Anna Musz-Pomorska ◽  
Wojciech Franus

This paper presents research considering hydraulic as well as swelling and shrinkage characteristics of potential recycled fine particle materials for compacted clay liner for sustainable landfills. Five locally available clay soils mixed with 10% (by mass) of NaP1 recycled zeolite were tested. The performed analysis was based on determined plasticity, cation exchange capacity, coefficient of saturated hydraulic conductivity after compaction, several shrinkage and swelling characteristics as well as, finally, saturated hydraulic conductivity after three cycles of drying and rewetting of tested specimens and the reference samples. The obtained results showed that addition of zeolite to clay soils allowed reduction in their saturated hydraulic conductivity to meet the required threshold (≤1 × 10−9 m/s) of sealing capabilities for compacted clay liner. On the other hand, an increase in plasticity, swelling, and in several cases in shrinkage, of the clay–zeolite mixture was observed. Finally, none of the tested mixtures was able to sustain its sealing capabilities after three cycles of drying and rewetting. Thus, the studied clayey soils mixed with sustainable recycled zeolite were assessed as promising materials for compacted liner construction. However, the liner should be operated carefully to avoid extensive dissication and cracking.


Sign in / Sign up

Export Citation Format

Share Document