Different effects of single versus repeated additions of glucose on the soil organic carbon turnover in a temperate forest receiving long-term N addition

Geoderma ◽  
2019 ◽  
Vol 341 ◽  
pp. 59-67 ◽  
Author(s):  
Qingkui Wang ◽  
Longchi Chen ◽  
Qingpeng Yang ◽  
Tao Sun ◽  
Changmeng Li
2021 ◽  
Vol 18 (13) ◽  
pp. 4021-4037
Author(s):  
Christopher R. Taylor ◽  
Victoria Janes-Bassett ◽  
Gareth K. Phoenix ◽  
Ben Keane ◽  
Iain P. Hartley ◽  
...  

Abstract. Ecosystems limited in phosphorous (P) are widespread, yet there is limited understanding of how these ecosystems may respond to anthropogenic deposition of nitrogen (N) and the interconnected effects on the biogeochemical cycling of carbon (C), N, and P. Here, we investigate the consequences of enhanced N addition for the C–N–P pools of two P-limited grasslands, one acidic and one limestone, occurring on contrasting soils, and we explore their responses to a long-term nutrient-manipulation experiment. We do this by combining data with an integrated C–N–P cycling model (N14CP). We explore the role of P-access mechanisms by allowing these to vary in the modelling framework and comparing model plant–soil C–N–P outputs to empirical data. Combinations of organic P access and inorganic P availability most closely representing empirical data were used to simulate the grasslands and quantify their temporal response to nutrient manipulation. The model suggested that access to organic P is a key determinant of grassland nutrient limitation and responses to experimental N and P manipulation. A high rate of organic P access allowed the acidic grassland to overcome N-induced P limitation, increasing biomass C input to soil and promoting soil organic carbon (SOC) sequestration in response to N addition. Conversely, poor accessibility of organic P for the limestone grassland meant N provision exacerbated P limitation and reduced biomass input to the soil, reducing soil carbon storage. Plant acquisition of organic P may therefore play an important role in reducing P limitation and determining responses to anthropogenic changes in nutrient availability. We conclude that grasslands differing in their access to organic P may respond to N deposition in contrasting ways, and where access is limited, soil organic carbon stocks could decline.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1036
Author(s):  
Sauro Simoni ◽  
Giovanni Caruso ◽  
Nadia Vignozzi ◽  
Riccardo Gucci ◽  
Giuseppe Valboa ◽  
...  

Edaphic arthropod communities provide valuable information about the prevailing status of soil quality to improve the functionality and long-term sustainability of soil management. The study aimed at evaluating the effect of plant and grass cover on the functional biodiversity and soil characteristics in a mature olive orchard (Olea europaea L.) managed for ten years by two conservation soil managements: natural grass cover (NC) and conservation tillage (CT). The trees under CT grew and yielded more than those under NC during the period of increasing yields (years 4–7) but not when they reached full production. Soil management did not affect the tree root density. Collecting samples underneath the canopy (UC) and in the inter-row space (IR), the edaphic environment was characterized by soil structure, hydrological properties, the concentration and storage of soil organic carbon pools and the distribution of microarthropod communities. The soil organic carbon pools (total and humified) were negatively affected by minimum tillage in IR, but not UC, without a loss in fruit and oil yield. The assemblages of microarthropods benefited, firstly, from the grass cover, secondly, from the canopy effect, and thirdly, from a soil structure ensuring a high air capacity and water storage. Feeding functional groups—hemiedaphic macrosaprophages, polyphages and predators—resulted in selecting the ecotonal microenvironment between the surface and edaphic habitat.


2021 ◽  
pp. 108322
Author(s):  
Junsheng Huang ◽  
Weixing Liu ◽  
Sen Yang ◽  
Lu Yang ◽  
Ziyang Peng ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 650
Author(s):  
Jesús Aguilera-Huertas ◽  
Beatriz Lozano-García ◽  
Manuel González-Rosado ◽  
Luis Parras-Alcántara

The short- and medium—long-term effects of management and hillside position on soil organic carbon (SOC) changes were studied in a centenary Mediterranean rainfed olive grove. One way to measure these changes is to analyze the soil quality, as it assesses soil degradation degree and attempts to identify management practices for sustainable soil use. In this context, the SOC stratification index (SR-COS) is one of the best indicators of soil quality to assess the degradation degree from SOC content without analyzing other soil properties. The SR-SOC was calculated in soil profiles (horizon-by-horizon) to identify the best soil management practices for sustainable use. The following time periods and soil management combinations were tested: (i) in the medium‒long-term (17 years) from conventional tillage (CT) to no-tillage (NT), (ii) in the short-term (2 years) from CT to no-tillage with cover crops (NT-CC), and (iii) the effect in the short-term (from CT to NT-CC) of different topographic positions along a hillside. The results indicate that the SR-SOC increased with depth for all management practices. The SR-SOC ranged from 1.21 to 1.73 in CT0, from 1.48 to 3.01 in CT1, from 1.15 to 2.48 in CT2, from 1.22 to 2.39 in NT-CC and from 0.98 to 4.16 in NT; therefore, the soil quality from the SR-SOC index was not directly linked to the increase or loss of SOC along the soil profile. This demonstrates the time-variability of SR-SOC and that NT improves soil quality in the long-term.


CATENA ◽  
2017 ◽  
Vol 151 ◽  
pp. 63-73 ◽  
Author(s):  
Samuel Bouchoms ◽  
Zhengang Wang ◽  
Veerle Vanacker ◽  
Sebastian Doetterl ◽  
Kristof Van Oost

2016 ◽  
Vol 96 (4) ◽  
pp. 347-350 ◽  
Author(s):  
Elwin G. Smith ◽  
H. Henry Janzen ◽  
Lauren Scherloski ◽  
Francis J. Larney ◽  
Benjamin H. Ellert

After 47 yr of no-till and reduced summerfallow at Lethbridge, Alberta, soil organic carbon concentration and stocks increased 2.14 g kg−1 and 2.22 Mg ha−1, respectively, in the surface 7.5 cm layer. These findings confirmed the conservation value of reducing tillage and summerfallow. The annual changes were relatively small.


2003 ◽  
Vol 83 (4) ◽  
pp. 363-380 ◽  
Author(s):  
A. J. VandenBygaart ◽  
E. G. Gregorich ◽  
D. A. Angers

To fulfill commitments under the Kyoto Protocol, Canada is required to provide verifiable estimates and uncertainties for soil organic carbon (SOC) stocks, and for changes in those stocks over time. Estimates and uncertainties for agricultural soils can be derived from long-term studies that have measured differences in SOC between different management practices. We compiled published data from long-term studies in Canada to assess the effect of agricultural management on SOC. A total of 62 studies were compiled, in which the difference in SOC was determined for conversion from native land to cropland, and for different tillage, crop rotation and fertilizer management practices. There was a loss of 24 ± 6% of the SOC after native land was converted to agricultural land. No-till (NT) increased the storage of SOC in western Canada by 2.9 ± 1.3 Mg ha-1; however, in eastern Canada conversion to NT did not increase SOC. In general, the potential to store SOC when NT was adopted decreased with increasing background levels of SOC. Using no-tillage, reducing summer fallow, including hay in rotation with wheat (Triticum aestivum L.), plowing green manures into the soil, and applying N and organic fertilizers were the practices that tended to show the most consistent in creases in SOC storage. By relating treatment SOC levels to those in the control treatments, SOC stock change factors and their levels of uncertainty were derived for use in empirical models, such as the United Nations Intergovernmental Panel on Climate Change (IPCC). Guidelines model for C stock changes. However, we must be careful when attempting to extrapolate research plot data to farmers’ fields since the history of soil and crop management has a significant influence on existing and future SOC stocks. Key words: C sequestration, tillage, crop rotations, fertilizer, cropping intensity, Canada


2015 ◽  
Vol 4 (1) ◽  
pp. 161-178
Author(s):  
Davood A. Dar ◽  
Bhawana Pathak ◽  
M. H. Fulekar

 Soil organic carbon (SOC) estimation in temperate forests of the Himalaya is important to estimate their contribution to regional, national and global carbon stocks. Physico chemical properties of soil were quantified to assess soil organic carbon density (SOC) and SOC CO2 mitigation density at two soil depths (0-10 and 10-20 cms) under temperate forest in the Northern region of Kashmir Himalayas India. The results indicate that conductance, moisture content, organic carbon and organic matter were significantly higher while as pH and bulk density were lower at Gulmarg forest site. SOC % was ranging from 2.31± 0.96 at Gulmarg meadow site to 2.31 ± 0.26 in Gulmarg forest site. SOC stocks in these temperate forests were from 36.39 ±15.40 to 50.09 ± 15.51 Mg C ha-1. The present study reveals that natural vegetation is the main contributor of soil quality as it maintained the soil organic carbon stock. In addition, organic matter is an important indicator of soil quality and environmental parameters such as soil moisture and soil biological activity change soil carbon sequestration potential in temperate forest ecosystems.DOI: http://dx.doi.org/10.3126/ije.v4i1.12186International Journal of Environment Volume-4, Issue-1, Dec-Feb 2014/15; page: 161-178


Sign in / Sign up

Export Citation Format

Share Document