Colloidal iron and organic carbon control soil aggregate formation and stability in arable Luvisols

Geoderma ◽  
2020 ◽  
Vol 374 ◽  
pp. 114421 ◽  
Author(s):  
Lars Krause ◽  
Erwin Klumpp ◽  
Ines Nofz ◽  
Anna Missong ◽  
Wulf Amelung ◽  
...  
PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0238883
Author(s):  
Liang Jin ◽  
Dan Wei ◽  
Dawei Yin ◽  
Baoku Zhou ◽  
JianLi Ding ◽  
...  

The combination of chemical fertilizer and biochar is regarded as a useful soil supplement for improving the properties of soil and crop yields, and this study describes how the biochar of maize straw can be used to improve the quality of the degraded black soil. This has been achieved by examining the effects of combining different amounts of biochar with chemical fertilizer on the porosities and aggregate formation of soil and exploring how these changes positively impact on crop yields. A field trial design combining different amounts of maize straw biochar [0 (NPK), 15.75 (BC1), 31.5 (BC2), and 47.25 t ha−1 (BC3)] with a chemical fertilizer (NPK) has been used to investigate changes in the formation of soil aggregate, clay content, soil organic carbon (SOC), and crop yields in Chinese black soil over a three year period from 2013 to 2015. The results of this study show that the addition of fertilizer and biochar in 2013 to black soil results in an increased soybean and maize yields from 2013 to 2015 for all the treatments, with BC1/BC2 affording improved crop yields in 2015, while BC3 gave a lower soybean yield in 2015. Total porosities and pore volumes were increased for BC1 and BC2 treatments but relatively decreased for BC3, which could be attributed to increased soil capillary caused by the presence of higher numbers of fine soil particles. The addition of biochar had a positive influence on the numbers and mean weight diameters (MWD) of soil macroaggregates (>0.25 mm) that were present, with the ratio of SOC to TN in soil macroaggregates found to be greater than in the microaggregates. The most significant amount of carbon present in macroaggregates (>2 mm and 0.25–2 mm) was observed when BC2 was applied as a soil additive. Increasing the levels of maze straw biochar to 47.25 t ha−1 led to an increase in the total organic carbon of soil, however, the overall amount of macroaggregates and MWD were decreased, which is possibly due to localized changes in microbial habitat. The supplementation of biochar increased in the amount of aromatic C present (most significant effect observed for BC2), with the ratio of aliphatic C to aromatic C found to be enhanced due to a relative reduction in the aliphatic C content with >2 mm particle fraction. These changes in organic carbon content and soil stability were analyzed using univariate quadratic equations to explain the relationship between the type of functional groups (polysaccharide C, aliphatic C, aromatic C, aliphatic C/aromatic C) present in the soil aggregates and their MWDs, which were found to vary significantly. Overall, the results of this study indicate that the use of controlled amounts of maize-straw biochar in black soil is beneficial for improving crop yields and levels of soil aggregation, however, the use of excessive amounts of biochar results in unfavorable aggregate formation which negatively impacts the yields of crop growth. The data produced suggest that aromatic C content can be used as a single independent variable to characterize the stability of soil aggregate when biochar/fertilizer mixtures are used as soil additives to boost growth yields. Analysis of soil and crop performance in black soil revealed that the application of maize-straw biochar at a rate of 15.75 and 31.5 t ha−1 had positive effects on crop yields, soil aggregation and accumulation of aromatic C in the aggregate fractions when a soybean-maize rotation system was followed over three years.


2021 ◽  
Vol 13 (3) ◽  
pp. 1541
Author(s):  
Xiaolin Shen ◽  
Lili Wang ◽  
Qichen Yang ◽  
Weiming Xiu ◽  
Gang Li ◽  
...  

Our study aimed to provide a scientific basis for an appropriate tillage management of wheat-maize rotation system, which is beneficial to the sustainable development of agriculture in the fluvo-aquic soil areas in China. Four tillage treatments were investigated after maize harvest, including rotary tillage with straw returning (RT), deep ploughing with straw returning (DP), subsoiling with straw returning (SS), and no tillage with straw mulching (NT). We evaluated soil organic carbon (SOC), dissolved organic carbon (DOC), permanganate oxidizable carbon (POXC), microbial biomass carbon (MBC), and particulate organic carbon (POC) in bulk soil and soil aggregates with five particle sizes (>5 mm, 5–2 mm, 2–1 mm, 1–0.25 mm, and <0.25 mm) under different tillage managements. Results showed that compared with RT treatment, NT treatment not only increased soil aggregate stability, but also enhanced SOC, DOC, and POC contents, especially those in large size macroaggregates. DP treatment also showed positive effects on soil aggregate stability and labile carbon fractions (DOC and POXC). Consequently, we suggest that no tillage or deep ploughing, rather than rotary tillage, could be better tillage management considering carbon storage. Meanwhile, we implied that mass fractal dimension (Dm) and POXC could be effective indicators of soil quality, as affected by tillage managements.


Author(s):  
Mohammad M. R. Jahangir ◽  
Muhammad Jahiruddin ◽  
Hasina Akter ◽  
Rahana Pervin ◽  
Khandakar Rafiq Islam

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5984 ◽  
Author(s):  
Nataly Carolina Guevara Campoverde ◽  
Christiane Hassenrück ◽  
Pier Luigi Buttigieg ◽  
Astrid Gärdes

Bacteria play a crucial role in the marine carbon cycle, contributing to the production and degradation of organic carbon. Here, we investigated organic carbon pools, aggregate formation, and bacterioplankton communities in three contrasting oceanographic settings in the Galapagos Archipelago. We studied a submarine CO2 vent at Roca Redonda (RoR), an upwelling site at Bolivar Channel (BoC) subjected to a weak El Niño event at the time of sampling in October 2014, as well as a site without volcanic or upwelling influence at Cowley Islet (CoI). We recorded physico-chemical parameters, and quantified particulate and dissolved organic carbon, transparent exopolymeric particles, and the potential of the water to form larger marine aggregates. Free-living and particle-attached bacterial communities were assessed via 16S rRNA gene sequencing. Both RoR and BoC exhibited temperatures elevated by 1–1.5 °C compared to CoI. RoR further experienced reduced pH between 6.8 and 7.4. We observed pronounced differences in organic carbon pools at each of the three sites, with highest dissolved organic carbon concentrations at BoC and RoR, and highest particulate organic carbon concentrations and aggregate formation at BoC. Bacterioplankton communities at BoC were dominated by opportunistic copiotrophic taxa, such as Alteromonas and Roseobacter, known to thrive in phytoplankton blooms, as opposed to oligotrophic taxa dominating at CoI, such as members of the SAR11 clade. Therefore, we propose that bacterial communities were mainly influenced by the availability of organic carbon at the investigated sites. Our study provides a comprehensive characterization of organic carbon pools and bacterioplankton communities, highlighting the high heterogeneity of various components of the marine carbon cycle around the Galapagos Archipelago.


2020 ◽  
Vol 297 ◽  
pp. 106924 ◽  
Author(s):  
Chukwuebuka C. Okolo ◽  
Girmay Gebresamuel ◽  
Amanuel Zenebe ◽  
Mitiku Haile ◽  
Peter N. Eze

Sign in / Sign up

Export Citation Format

Share Document