Two-dimensional numerical modelling of strategies to avoid thermal stress induced flow channeling in fractured geothermal reservoirs

Geothermics ◽  
2021 ◽  
Vol 90 ◽  
pp. 101978
Author(s):  
Mats Rongved ◽  
Andreas Bauer ◽  
David Dempsey ◽  
Rune M. Holt
2015 ◽  
Vol 49 (3) ◽  
pp. 1001-1024 ◽  
Author(s):  
Pengcheng Fu ◽  
Yue Hao ◽  
Stuart D. C. Walsh ◽  
Charles R. Carrigan

1995 ◽  
Vol 32 (2) ◽  
pp. 313-322 ◽  
Author(s):  
David A. Peters ◽  
Swaminathan Karunamoorthy ◽  
Wen-Ming Cao

1983 ◽  
Vol 26 (215) ◽  
pp. 708-715 ◽  
Author(s):  
Mamoru FURUKAWA ◽  
Minoru HAMADA ◽  
Hiroshi KITAGAWA ◽  
Toshimichi FUKUOKA

2021 ◽  
Author(s):  
Brent W. Webb ◽  
Vladimir Solovjov

Abstract The influence of real gas radiation on the thermal and hydrodynamic stability is investigated in a two-dimensional layer of radiatively participating H2O and/or CO2 heated from below. The non-gray radiation effects of the two species are treated rigorously using a global spectral approach, the Spectral Line Weighted-sum-of-gray-gases model. The phenomena are explored by solving the full coupled laminar equations of motion, energy, and radiative transfer from the low-Rayleigh number, pure conduction-radiation regime through the onset of buoyancy-induced flow to the developed Bénard convection regime. The evolution of the thermal, velocity, and radiative heating fields is studied, and the critical Rayleigh number is characterized as a function of species mole fraction, average layer gas temperature, layer depth, wall emissivity, and the total gas pressure. It is found that participating radiation in the medium has the effect of stabilizing the layer, delaying transition to buoyancy-induced flow. The development of buoyancy-induced flow and temperature, along with the radiative heating are presented. It is found that the critical Rayleigh number in the radiatively participating gas layer can be more than an order of magnitude higher than the classical convection-only scenario. The onset of instability is found to depend on the species mole fractions, average gas temperature in the layer, wall emissivity, layer depth, and total pressure. Generally, all other variables being the same, H2O has a greater stabilizing influence on the layer than CO2.


2020 ◽  
Vol 231 (11) ◽  
pp. 4603-4619
Author(s):  
Hai-Bing Yang ◽  
Chuan-Bin Yu ◽  
Jie-Yao Tang ◽  
Jian Qiu ◽  
Xiao-Qing Zhang

1979 ◽  
Vol 23 (89) ◽  
pp. 420-421 ◽  
Author(s):  
W. F. Budd ◽  
B. J. McInnes ◽  
I. Smith

Abstract It is difficult to deduce sliding properties from the numerical modelling of ordinary glaciers because the flow law of ice is still not known well enough to clearly differentiate sliding from internal deformation of the ice. For glaciers undergoing high-speed surges it appears that the majority of the total speed is due to sliding. Furthermore the average basal shear stress of the ice mass is lowered during the surge. This suggests that surging glaciers can be modelled by incorporating a sliding friction law which has the effective friction coefficient decreasing for high velocities. A relation of this type has been found for ice sliding on granite at −0.5°C by Barnes and others (1971) and has also been obtained for rough slabs with ice at the pressure-melting point by Budd and others (1979). A simple two-dimensional model was developed by Budd and McInnes (1974) and Budd (1975), which was found to exhibit the typical periodic surge-like characteristics of real ice masses. Since the sliding-stress relation for the low velocities and stresses was not known, and was not so important for the surges, it was decided to use the condition of gross equilibrium (i.e. that the ice mass as a whole does not accelerate) together with a single-parameter relation for the way in which the friction decreases with stress and velocity to prescribe the basal shear-stress distribution. The low-stress-velocity relation can thus be obtained as a result. This two-dimensional model has now been parameterized to take account of the three-dimensional aspects of real ice masses. A number of ice masses have since been closely matched by the model including three well-known surging ice masses: Lednik Medvezhiy, Variegated Glacier, and Bruarjökull. Since the flow properties of ice are so poorly known—especially for longitudinal stress and strain-rates—the model has been run with two unknown parameters: one a flow-law parameter (η) and the other a sliding parameter (ø). The model is run over a wide range of these two parameters to see if a good match can be made to the real ice masses and if so what the values of the parameters η and ø are for best fit. The matching of the three above ice masses gave very similar values for each of the two parameters η and ø, the value of η being within the range of values expected for the flow properties of temperate ice as determined by laboratory experiments. Using the same values of η and ø it is found that the ordinary glaciers modelled so far do not develop surging but that they could do if the value of ø were increased or if the mass-balance input were sufficiently increased. For Lednik Medvezhiy a detailed analysis of the friction coefficient with velocity was carried out and it was found that the values required for best fit showed a very close agreement to the sliding friction curve of Barnes and others (1971) at −0.5°C. It is concluded that this type of sliding relation can account for the major features of glacier surge phenomena. Finally it is apparent that the numerical modelling technique can be used very effectively to test any large-scale bulk sliding relation by the analysis of real surges of ice masses and in addition can provide further insight into the sliding relation in association with other stresses in the ice mass.


Sign in / Sign up

Export Citation Format

Share Document