A methodology for lithology-based thermal conductivities at a regional scale for shallow geothermal energy – Application to the Brussels-Capital Region

Geothermics ◽  
2021 ◽  
Vol 95 ◽  
pp. 102117
Author(s):  
Pierre Gerard ◽  
Mathilde Vincent ◽  
Bertrand François
Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5740
Author(s):  
Adela Ramos-Escudero ◽  
M. Socorro García-Cascales ◽  
Javier F. Urchueguía

In order to boost the use of shallow geothermal energy, reliable and sound information concerning its potential must be provided to the public and energy decision-makers, among others. To this end, we developed a GIS-based methodology that allowed us to estimate the resource, energy, economic and environmental potential of shallow geothermal energy at a regional scale. Our method focuses on closed-loop borehole heat exchanger systems, which are by far the systems that are most utilized for heating and cooling purposes, and whose energy demands are similar throughout the year in the study area applied. The resource was assessed based on the thermal properties from the surface to a depth of 100 m, considering the water saturation grade of the materials. Additionally, climate and building characteristics data were also used as the main input. The G.POT method was used for assessing the annual shallow geothermal resource and for the specific heat extraction (sHe) rate estimation for both heating and, for the first time, for cooling. The method was applied to the Region of Murcia (Spain) and thematic maps were created with the outputting results. They offer insight toward the thermal energy that can be extracted for both heating and cooling in (MWh/year) and (W/m); the technical potential, making a distinction over the climate zones in the region; the cost of the possible ground source heat pump (GSHP) installation, associated payback period and the cost of producing the shallow geothermal energy; and, finally, the GHG emissions savings derived from its usage. The model also output the specific heat extraction rates, which are compared to those from the VDI 4640, which prove to be slightly higher than the previous one.


Geothermics ◽  
2015 ◽  
Vol 57 ◽  
pp. 173-184 ◽  
Author(s):  
Antonio Galgaro ◽  
Eloisa Di Sipio ◽  
Giordano Teza ◽  
Elisa Destro ◽  
Michele De Carli ◽  
...  

2007 ◽  
pp. 385-435
Author(s):  
Martin Kaltschmitt ◽  
Wolfgang Streicher ◽  
Andreas Wiese

2021 ◽  
Author(s):  
Cornelia Steiner ◽  
Gregor Goetzl ◽  
Martin Fuchsluger ◽  
Alexander Rehbogen

<p>Neither regional development, construction projects nor infrastructure development – structural planning does not fully consider energy supply in Austria (yet). The project “Spatial Energy Planning for Heat Transition” is part of the research initiative “Green Energy Lab”, which has a project life-time from June 2018 to May 2021. It aims to provide a sound basis for the integration of heat in private and public planning processes and for the implementation of the energy infrastructure of the future together with energy providers.</p><p>Three Austrian states (Vienna, Styria and Salzburg), their capital cities and pilot-municipalities of all scales work together to provide all information necessary for the implementation of spatial heat-planning – as role model for Austria and other European countries. The GIS-based web-tool “heat-atlas” will provide this harmonized data and serve an information platform for project developers as well as for regional planning, fostering a sustainable use of all available sustainable energy resources and infrastructures to their full extent. The system of the information platform is arbitrarily scalable and is aimed to be expanded to other interested regions of Austria on demand.</p><p>One part of this “heat-atlas” is about shallow geothermal energy and covers vertical closed loop and open loop systems. The Geological Survey of Austria developed new methods to estimate capacity and energy resources as well as to show possible limitations of shallow geothermal energy use on property level. The resource calculations combine location-specific parameters such as thermal conductivity, underground temperature and groundwater availability with system-specific parameters such as mode of operation, operational hours, geometry and threshold values demanded by official regulations.</p><p>The method provides not only information about the maximum amount of energy available on the property, but also about the cover ratio of the demand. So called level-1 maps show the resources for standardized well-doublets and borehole heat exchangers independently of the property. The calculations for level-2 maps consider site-specific properties such as heating and cooling demand, operational hours and size of the property. This enables the estimation of the overall energy resources and the cover ratio of the property.</p><p>The results are shown as maps and as location specific query, which gives a concise summary of all relevant information for one location in form of an automatically generated report. More information about the project is available at http://www.waermeplanung.at/.</p>


Sign in / Sign up

Export Citation Format

Share Document