Impacts of climate and CO2 changes on the vegetation growth and carbon balance of Qinghai–Tibetan grasslands over the past five decades

2012 ◽  
Vol 98-99 ◽  
pp. 73-80 ◽  
Author(s):  
Shilong Piao ◽  
Kun Tan ◽  
Huijuan Nan ◽  
Philippe Ciais ◽  
Jingyun Fang ◽  
...  
2017 ◽  
Vol 114 (36) ◽  
pp. 9575-9580 ◽  
Author(s):  
Jonathan Sanderman ◽  
Tomislav Hengl ◽  
Gregory J. Fiske

Human appropriation of land for agriculture has greatly altered the terrestrial carbon balance, creating a large but uncertain carbon debt in soils. Estimating the size and spatial distribution of soil organic carbon (SOC) loss due to land use and land cover change has been difficult but is a critical step in understanding whether SOC sequestration can be an effective climate mitigation strategy. In this study, a machine learning-based model was fitted using a global compilation of SOC data and the History Database of the Global Environment (HYDE) land use data in combination with climatic, landform and lithology covariates. Model results compared favorably with a global compilation of paired plot studies. Projection of this model onto a world without agriculture indicated a global carbon debt due to agriculture of 133 Pg C for the top 2 m of soil, with the rate of loss increasing dramatically in the past 200 years. The HYDE classes “grazing” and “cropland” contributed nearly equally to the loss of SOC. There were higher percent SOC losses on cropland but since more than twice as much land is grazed, slightly higher total losses were found from grazing land. Important spatial patterns of SOC loss were found: Hotspots of SOC loss coincided with some major cropping regions as well as semiarid grazing regions, while other major agricultural zones showed small losses and even net gains in SOC. This analysis has demonstrated that there are identifiable regions which can be targeted for SOC restoration efforts.


2017 ◽  
Vol 6 (1) ◽  
pp. 77-82
Author(s):  
Vera Valentinovna Solovieva

Features of reservoirs use make it necessary to collect, analyse and synthesise environmental information about the state of hydroecosystems with a purpose of their development forecast. Overgrowing processes are an important indicator of ecosystem. The following paper contains the results of the study of Chernovskoe reservoir flora and vegetation in different years. Floristic diversity is compared with other reservoirs and hydro botanic information about them has already been published in a number of the authors papers. The comparative analysis has shown that the overall composition of reservoirs flora is random, while there is some regularity in the environmental spectrum - each of them is characterized by a small number of aquatic species and by the dominance of coastal plant species. The study of Chernovskoe reservoir vegetation has shown that the composition of dominants has changed over the past 40 years, from 1974 to 2015. There is a dominance of air water vegetation above the water one, but the borders of the water vegetation growth have widened. Chernovskoe reservoir is currently in dynamic equilibrium. The lifetime of aquatic ecosystem at this stage may be unlimited if there is an unstable hydro regime and impulsive character of water use. The reservoir water level lowering may lead to overgrowth and accelerate activation of waterlogging.


2020 ◽  
Vol 12 (10) ◽  
pp. 1546 ◽  
Author(s):  
Christopher Potter ◽  
Olivia Alexander

Understanding trends in vegetation phenology and growing season productivity at a regional scale is important for global change studies, particularly as linkages can be made between climate shifts and the vegetation’s potential to sequester or release carbon into the atmosphere. Trends and geographic patterns of change in vegetation growth and phenology from the MODerate resolution Imaging Spectroradiometer (MODIS) satellite data sets were analyzed for the state of Alaska over the period 2000 to 2018. Phenology metrics derived from the MODIS Normalized Difference Vegetation Index (NDVI) time-series at 250 m resolution tracked changes in the total integrated greenness cover (TIN), maximum annual NDVI (MAXN), and start of the season timing (SOST) date over the past two decades. SOST trends showed significantly earlier seasonal vegetation greening (at more than one day per year) across the northeastern Brooks Range Mountains, on the Yukon-Kuskokwim coastal plain, and in the southern coastal areas of Alaska. TIN and MAXN have increased significantly across the western Arctic Coastal Plain and within the perimeters of most large wildfires of the Interior boreal region that burned since the year 2000, whereas TIN and MAXN have decreased notably in watersheds of Bristol Bay and in the Cook Inlet lowlands of southwestern Alaska, in the same regions where earlier-trending SOST was also detected. Mapping results from this MODIS time-series analysis have identified a new database of localized study locations across Alaska where vegetation phenology has recently shifted notably, and where land cover types and ecosystem processes could be changing rapidly.


2019 ◽  
Vol 269-270 ◽  
pp. 239-248 ◽  
Author(s):  
Xiangyi Li ◽  
Yue Li ◽  
Anping Chen ◽  
Mengdi Gao ◽  
Ingrid J. Slette ◽  
...  

2020 ◽  
Author(s):  
Siwen Feng ◽  
Hongya Wang ◽  
Hongyan Liu ◽  
Chenyi Zhu ◽  
Shuai Li

<div>With the implementation of the Grain to Green Project, the vegetation growth in karst region in southwest China has increased. In order to explore whether the growth of trees can be sustained after artificial afforestation in karst area and the influence of the forestland change on soil erosion, the WaTEM/SEDEM model was used to simulate the 11 stages of annual soil erosion in the past 33 years in Chongan river drainage basin in Guizhou, and the dominant influencing factors of soil erosion change in the past 33 years were discussed based the pixel scale in this study. The results showed that the forestland increased in a fluctuating way after the conversion project, and the decrease of forestland was mainly caused by drought, especially in the area where the dolomites were distributed. Therefore, the change of forestland caused no significant improvement in soil erosion since the Grain to Green Project.</div><p><!--5f39ae17-8c62-4a45-bc43-b32064c9388a:W3siYmxvY2tJZCI6IjE2NjMtMTU3ODcwODE4MTUwMCIsImJsb2NrVHlwZSI6InBhcmFncmFwaCIsInN0eWxlcyI6eyJhbGlnbiI6ImxlZnQiLCJpbmRlbnQiOjAsInRleHQtaW5kZW50IjowLCJsaW5lLWhlaWdodCI6MS43NSwiYmFjay1jb2xvciI6IiIsInBhZGRpbmciOiIifSwidHlwZSI6InBhcmFncmFwaCIsInJpY2hUZXh0Ijp7ImRhdGEiOlt7ImNoYXIiOiJXIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibSJ9LHsiY2hhciI6InAifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6Im0ifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiRyJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiRyJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiUCJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoiaiJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJjIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6IiwifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InYifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiZyJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZyJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoidyJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImsifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiICJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiZyJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6InUifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6IncifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiQyJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiYyJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiZCJ9LHsiY2hhciI6Ii4ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiSSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IngifSx7ImNoYXIiOiJwIn0seyJjaGFyIjoibCJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ3In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJnIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJ3In0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6ImYifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYyJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJ1In0seyJjaGFyIjoicyJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiZCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJjIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJmIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiayJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiJ1In0seyJjaGFyIjoiZSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJjIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoibCJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiZCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJjIn0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiZyJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiLCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiVyJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJUIn0seyJjaGFyIjoiRSJ9LHsiY2hhciI6Ik0ifSx7ImNoYXIiOiIvIn0seyJjaGFyIjoiUyJ9LHsiY2hhciI6IkUifSx7ImNoYXIiOiJEIn0seyJjaGFyIjoiRSJ9LHsiY2hhciI6Ik0ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoibSJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidyJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InUifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJtIn0seyJjaGFyIjoidSJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IjEifSx7ImNoYXIiOiIxIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiYSJ9LHsiY2hhciI6ImcifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJ1In0seyJjaGFyIjoiYSJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJwIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiICJ9LHsiY2hhciI6IjMifSx7ImNoYXIiOiIzIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InkifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IkMifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJnIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJ2In0seyJjaGFyIjoiZSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZCJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiZyJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYiJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiRyJ9LHsiY2hhciI6InUifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoieiJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoidSJ9LHsiY2hhciI6IiwifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6Im0ifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6ImYifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoidSJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiYyJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiZyJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJmIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6ImMifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoibyJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJmIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJjIn0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiZyJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InAifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiMyJ9LHsiY2hhciI6IjMifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoieSJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidyJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJjIn0seyJjaGFyIjoidSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYiJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InAifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoieCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJjIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJ1In0seyJjaGFyIjoiZCJ9LHsiY2hhciI6InkifSx7ImNoYXIiOiIuIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJ1In0seyJjaGFyIjoibCJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6IncifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiZCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiICJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJmIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiYyJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiZCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImYifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoidSJ9LHsiY2hhciI6ImMifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoidSJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJnIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IncifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoieSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYyJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoidiJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJwIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJqIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImMifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiLCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYyJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJmIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImYifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidyJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6Im0ifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoieSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJjIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InUifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYiJ9LHsiY2hhciI6InkifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZCJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoidSJ9LHsiY2hhciI6ImcifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6IiwifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJwIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImMifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoieSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ3In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZCJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6Im0ifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IncifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZCJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoiYiJ9LHsiY2hhciI6InUifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIuIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiwifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImMifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJnIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJmIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImMifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoidSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiZCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6ImcifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6ImYifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoiYyJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibSJ9LHsiY2hhciI6InAifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6InYifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoibSJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiYyJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IkcifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IkcifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlAifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6ImoifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYyJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiIuIn1dLCJpc1JpY2hUZXh0Ijp0cnVlLCJrZWVwTGluZUJyZWFrIjp0cnVlfX1d--></p>


2020 ◽  
Author(s):  
Pierre St-Laurent ◽  
Marjorie A. M. Friedrichs ◽  
Raymond G. Najjar ◽  
Elizabeth H. Shadwick ◽  
Hanqin Tian ◽  
...  

Abstract. The Chesapeake Bay is a large coastal-plain estuary that has experienced considerable anthropogenic change over the past century. At the regional scale, land-use change has doubled the nutrient input from rivers and led to an increase in riverine carbon and alkalinity. The Bay has also experienced global changes, including the rise of atmospheric temperature and CO2. Here we seek to understand the relative impact of these changes on the inorganic carbon balance of the Bay between the early 1900's and the early 2000's. We use a linked land-estuarine-ocean modeling system that includes both inorganic and organic carbon and nitrogen cycling. Sensitivity experiments are performed to isolate the effect of changes in: (1) atmospheric CO2, (2) temperature, (3) riverine nitrogen loading and (4) riverine carbon and alkalinity loading. Specifically, we find that over the past century global changes have increased ingassing by roughly the same amount (~30 Gg-C yr−1) as has the increased riverine loadings. While the former is due primarily to increases in atmospheric CO2, the latter results from increased net ecosystem production that enhances ingassing. Interestingly, these increases in ingassing are partially mitigated by increased temperatures and increased riverine carbon and alkalinity inputs, both of which enhance outgassing. Overall, the Bay has evolved over the century to take up more atmospheric CO2 and produce more organic carbon. These results suggest that over the past century, changes in riverine nutrient loads have played an important role in altering coastal carbon budgets, but that ongoing global changes have also substantially affected coastal carbonate chemistry.


Ecology ◽  
2021 ◽  
Author(s):  
Hao Wang ◽  
Huiying Liu ◽  
Ni Huang ◽  
Jian Bi ◽  
Xuanlong Ma ◽  
...  

2016 ◽  
Author(s):  
Jennifer R. Marlon ◽  
Neil Pederson ◽  
Connor Nolan ◽  
Simon Goring ◽  
Bryan Shuman ◽  
...  

Abstract. Many ecosystem processes that influence Earth system feedbacks, including vegetation growth, water and nutrient cycling, and disturbance regimes, are strongly influenced by multi-decadal to millennial-scale variations in climate that cannot be captured by instrumental climate observations. Paleoclimate information is therefore essential for understanding contemporary ecosystems and their potential trajectories under a variety of future climate conditions. With the exception of fossil pollen records, there are a limited number of northeastern US (NE US) paleoclimate archives that can provide constraints on its temperature and hydroclimate history. Moreover, the records that do exist have not been considered together. Tree-ring data indicate that the 20th century was one of the wettest of the past 500 years in the eastern US (Pederson et al., 2014), and lake-level records suggest it was one of the wettest in the Holocene (Newby et al., 2014); how such results compare with other available data remains unclear, however. Here we conduct a systematic review, assessment, and comparison of paleotemperature and paleohydrological proxies from the NE US for the last 3000 years. Regional temperature reconstructions are consistent with the long-term cooling trend (1000 BCE–1700 CE) evident in hemispheric-scale reconstructions, but hydroclimate reconstructions reveal new information, including an abrupt transition from wet to dry conditions around 550–750 CE. NE US paleo data suggest that conditions during the Medieval Climate Anomaly were warmer and drier than during the Little Ice Age, and drier than today. There is some evidence for an acceleration over the past century of a longer-term wetting trend in the NE US, and coupled with the abrupt shift from a cooling trend to a warming trend from increased greenhouse gases, may have wide-ranging implications for species distributions, ecosystem dynamics, and extreme weather events. More work is needed to gather paleoclimate data in the NE US, make inter-proxy comparisons, and improve estimates of uncertainty in the reconstructions.


Geology ◽  
1998 ◽  
Vol 26 (5) ◽  
pp. 423 ◽  
Author(s):  
Fred T. Mackenzie ◽  
Abraham Lerman ◽  
Leah May B. Ver

2005 ◽  
Vol 35 (9) ◽  
pp. 2258-2267 ◽  
Author(s):  
John Yarie ◽  
Bill Parton

Evidence suggests that climate change dynamics have been occurring in the northern latitudes for the past two and a half decades. The CENTURY ecosystem model was used for a set of simulations related to the carbon dynamics of interior Alaska taiga forest types. The functional dynamics of three age-classes (young, middle, and mature) of three ecosystem types (white spruce (Picea glauca (Moench) Voss), black spruce (Picea mariana (Mill.) BSP), and hardwoods) were compared using an average climate that was present prior to 1980 and the climate record from 1980 to 2000. Estimates for total ecosystem production indicate a decrease in tree carbon capture for hardwood stands for all three age-classes summed across a 20-year climate change period. White spruce displayed increases in carbon capture for the three age-classes. Young and mid-aged black spruce stands showed a decrease in ecosystem productivity. The old-growth black spruce stand showed a small increase in carbon capture. Dynamics displayed for the entire ecosystem (soil organic matter, tree dynamics, dead wood, and forest litter) followed the same trends as vegetation productivity. For the same 20-year climate period and across all three age-classes, carbon capture decreased for hardwood ecosystems and increased for white spruce ecosystems. The young black spruce system showed a change from a positive carbon balance to a negative carbon balance. Based on the landscape area covered by each vegetation type, we suggest that the net effect of climate warming over the past 20 years has been a substantial decrease in carbon capture in the forests of interior Alaska.


Sign in / Sign up

Export Citation Format

Share Document