Configuration of water resources for a typical river basin in an arid region of China based on the ecological water requirements (EWRs) of desert riparian vegetation

2014 ◽  
Vol 122 ◽  
pp. 292-304 ◽  
Author(s):  
Hongbo Ling ◽  
Bin Guo ◽  
Hailiang Xu ◽  
Jinyi Fu
2020 ◽  
Vol 4 (3) ◽  
pp. 117-123
Author(s):  
Vanda Claudino-Sales

The rivers and their watersheds are fundamental elements of socioeconomic activities. In this article, we analyze the hydrographic basin of the Acaraú River, situated in the northeast of Brazil, from its geoenvironmental aspects, based on the perspective of the geosystem. In this perspective, a geoenvironmental picture of the hydrographic basin in question is presented, as well as the environmental problems that characterize it, postulating the need to carry out this type of survey to define the basin as a fundamental planning unit. The Acaraú River basin has particular characteristics, since it is located in a poor and extremely populous semi-arid region, which results in socio-environmental stress, whose main consequence is the environmental degradation of the fluvial course. The regional authorities need to be aware of the geoenvironmental elements raised in order to reverse this framework of socio-environmental degradation of water resources and to allow territorial growth based on sustainable development.


2018 ◽  
Vol 19 (3) ◽  
pp. 762-770 ◽  
Author(s):  
Chun-fang Yue ◽  
Qing-jie Wang ◽  
Yi-zhen Li

Abstract Water resources allocation decision-making in an arid region should consider the interaction of the economy, the environment, society, resources and other factors. In this paper, an index system for the comprehensive evaluation of water resources allocation in arid areas is established in response to the shortage of water resources, over-utilization of groundwater, and an unreasonable structure of agricultural water demand in the arid region of northwest China. It has been formulated based on current river basin water resources allocation practices and consideration of the fairness, efficiency and resource utilization rationality of water resources allocation. The projection tracking dynamic clustering approach was applied to analyze alternative water resource allocation schemes in the Kiz River Basin. It is concluded that the evaluation results demonstrate the following. (1) The PPDC model takes the actual measured value of the index as the basis for comprehensive evaluation, and it avoids the bias caused by the subjective formulation of weights. An optimal allocation scheme that has higher annual comprehensive benefits can better serve regional water resources management. (2) A projection pursuit dynamic cluster approach can deliver results which are more objective and reliable than existing evaluation approaches for water resources allocation. (3) Grey correlation analysis and projection tracking dynamic clustering are basically consistent with the evaluation results for water resources allocation in the Kiz River Basin. This suggests that the projection pursuit dynamic cluster is suitable for the evaluation of water resources allocation schemes.


2021 ◽  
Vol 11 (22) ◽  
pp. 10553
Author(s):  
Nattapong Puangkaew ◽  
Suwit Ongsomwang

Currently, Phuket Island is facing water scarcity because water demand for consumption was approximately 51 million m3/year, whereas water supply was only about 46 million m3/year. Thus, the study of water supply, demand and balancing are important for effective water resources management. This study aims to simulate the LULC data using the CLUE-S model, estimate water supply using the SWAT model, and calculate water demand using a water footprint basis for water balancing on the Island. In addition, tourist water demand was separately estimated under normal and new normal conditions (COVID-19 pandemic) to fit with the actual situation at national and international levels. Water balance results with the consideration of ecological water requirements suggest that a water deficit occurs every year under the dry year scenario in normal and new normal conditions. In addition, the monthly water balance indicates that a water deficit occurs in the summer season every year, both without and with the consideration of ecological water requirements. Consequently, it can be concluded that remote sensing data with advanced geospatial models can provide essential information about water supply, demand, and balance for water resources management, particularly water scarcity, in Phuket Island in the future. Additionally, this study’s conceptual framework and research workflows can assist government agencies in examining water deficits in other areas.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Aihong Fu ◽  
Weihong Li ◽  
Yi Wang

AbstractAnalysis of eco-environmental water requirements along a dry inland river under extreme drought conditions can provide a theoretical basis for the sustained utilization and management of water resources in arid regions. This paper uses the Yarkand River Basin in Xinjiang, China, as a case study to determine and assess a method to calculate targeted eco-environmental water requirements (TEEWR) for different ranges of ecological protection of inland riparian forests. The proposed method is intended to comprehensively analyze the water resources along arid inland rivers. Specifically, the ranges of ecological protection were gradually expanded at intervals of 1 km (or multiples of the smallest distance) away from the river course while the TEEWR was determined as a function of the ecological water demand of riparian forest vegetation (Yec) and its corresponding river loss (Xloss). The developed method was shown to be feasible for analyzing TEEWR in the Yarkand River Basin and thus provides a novel and effective approach for the rational utilization and management of water resources in inland river basins in arid regions.Article Highlights Zones of ecological protection were gradually expanded at intervals of 1 km (or multiples of the smallest distance) away from the river course on both sides of the dry inland river The targeted eco-environmental water requirement, defined as the ecological water demand of riparian forest vegetation (Yec) and its corresponding river loss (Xloss), was determined for a dry inland river basin The developed methods for calculating targeted eco-environmental water requirements are useful, but have limitations.


1970 ◽  
Author(s):  
M.W. Gaydos ◽  
J.E. Rogers ◽  
R.P. Smith

Sign in / Sign up

Export Citation Format

Share Document