Lithium and boron isotopic composition of sedimentary rocks — The role of source history and depositional environment: A 250Ma record from the Cadomian orogeny to the Variscan orogeny

2014 ◽  
Vol 26 (3-4) ◽  
pp. 1093-1110 ◽  
Author(s):  
Rolf L. Romer ◽  
Anette Meixner ◽  
Knut Hahne
2004 ◽  
Vol 35 (2) ◽  
pp. 119-137 ◽  
Author(s):  
S.D. Gurney ◽  
D.S.L. Lawrence

Seasonal variations in the stable isotopic composition of snow and meltwater were investigated in a sub-arctic, mountainous, but non-glacial, catchment at Okstindan in northern Norway based on analyses of δ18O and δD. Samples were collected during four field periods (August 1998; April 1999; June 1999 and August 1999) at three sites lying on an altitudinal transect (740–970 m a.s.l.). Snowpack data display an increase in the mean values of δ18O (increasing from a mean value of −13.51 to −11.49‰ between April and August), as well as a decrease in variability through the melt period. Comparison with a regional meteoric water line indicates that the slope of the δ18O–δD line for the snowpacks decreases over the same period, dropping from 7.49 to approximately 6.2.This change points to the role of evaporation in snowpack ablation and is confirmed by the vertical profile of deuterium excess. Snowpack seepage data, although limited, also suggest reduced values of δD, as might be associated with local evaporation during meltwater generation. In general, meltwaters were depleted in δ18O relative to the source snowpack at the peak of the melt (June), but later in the year (August) the difference between the two was not statistically significant. The diurnal pattern of isotopic composition indicates that the most depleted meltwaters coincide with the peak in temperature and, hence, meltwater production.


2019 ◽  
Vol 484 (4) ◽  
pp. 460-463
Author(s):  
N. A. Goryachev ◽  
A. V. Ignatiev ◽  
T. A. Velivetskaya ◽  
A. E. Budyak ◽  
Yu. I. Tarasova

The experience of LA—ICP determining of the isotopic composition of sulfur pyrite and arsenopyrite of gold deposits of the Baikal-patomsky plateau is considered. The technique is characterized. It is shown that all the studied samples have values δ34S and δ33S strictly corresponding to the law of mass-dependent fractionation of sulfur isotopes. A regular alleviation of the isotopic composition of sulfur of pyrite as its crystals grow for Sukhoi Log and the isotopic homogeneity of pyrite and pyrrhotite of the Golets Vysokhashiy deposit are established. It is concluded that the possible role of metamorphism of the Mamsko-Oronsky belt in the formation of isotopic homogeneity of ore sulfides.


2019 ◽  
Vol 8 (2) ◽  
pp. 65-80
Author(s):  
Unggul Prasetyo Wibowo ◽  
Anton Ferdianto ◽  
Nurul Laili ◽  
Dida Yurnaldi ◽  
Ruli Setiawan

Cisaar Valley is located on the east part of Sumedang Regency, West Jawa Province. It’s close to the boundary of Sumedang-Majalengka Regency. In this location the sandy and clay dominated sedimentary rocks are well exposed along the outcrops in the Cisaar Valley. These sedimentary rocks is inferred from Pliocene-Pleistocene deposits from Kaliwangu and Citalang Formation. Foraminifera microfossil that commonly used for interpretation of depositional environment is rarely found, whereas freshwater mollusk and vertebrate fossils often found in the sediment rocks of this area.  This condition raises a question, what is the environment of this valley in the past? Data obtained from measured stratigraphic sections along Cisaar river and its tributary rivers in Cibengkung and Cirendang hamlets, Jembarwangi village. There are at least three depositional paleoenvironments which from old to young are: shallow marine, estuarine and fluviatil braided channel depositional paleoenvironment.  Characteristics of the lower, middle and upper of the estuarine environment were found in this Cisaar Valley as the evidences of the oceanic regression processes was happened in the past in this area. 


2020 ◽  
pp. 203-226
Author(s):  
A. M. Sazonov ◽  
K. V. Lobanov ◽  
E. A. Zvyagina ◽  
S. I. Leontiev ◽  
S. A. Silyanov ◽  
...  

Abstract The Olympiada deposit, containing >1,560 metric tons (t; 50 Moz) of gold at an average grade of 4 to 4.6 g/t Au, occurs in central Siberia, Russia. Over 30 years, the deposit produced more than 580 t of gold, including 200 t from oxidized ore grading 11.1 g/t. The deposit forms a 2-km-long, steeply dipping system, which is traced downdip for 1.7 km. It occurs in the Neoproterozoic orogen of the Yenisei Ridge at the western margin of the Siberian craton. This and other gold deposits in the district are controlled by the large, long-lived Tatarka-Ishimbino tectonic zone, marking a suture between terranes chiefly consisting of deformed Meso- to Neoproterozoic carbonate-clastic sedimentary rocks. The combination of lithologic and structural factors was critical for localization of gold mineralization associated with calcic and siliceous alteration accompanied by early arsenic and late antimony sulfides. As a result, very fine (10 μm) and high fineness (910–997) gold associates with diverse sulfides, especially arsenopyrite, and commonly contains mercury, similar to some characteristics of Carlin-type deposits. Geochronologic studies suggest that mineralization was formed during several stages between 817 and 660 Ma. The isotopic composition of Os and He, along with presence of anomalous Ni, Co, and Pt, points to a mantle mafic source, whereas isotopic composition of Pb and S suggest a contaminated crustal source, i.e., originating from a mix of mantle and crustal fluids.


Lithos ◽  
2019 ◽  
Vol 326-327 ◽  
pp. 529-539 ◽  
Author(s):  
Qing Zhou ◽  
Wenchang Li ◽  
Guochang Wang ◽  
Zheng Liu ◽  
Yang Lai ◽  
...  

Lithos ◽  
2019 ◽  
Vol 350-351 ◽  
pp. 105227
Author(s):  
Pranjit Hazarika ◽  
Niraj Bhuyan ◽  
Dewashish Upadhyay ◽  
Kumar Abhinay ◽  
N.N. Singh

Sign in / Sign up

Export Citation Format

Share Document