Application of environmental isotopes in sustainability assessment of the groundwater resources of Lagos Coastal Basin (LCB), south-west, Nigeria

Author(s):  
Mumeen A. Yusuf ◽  
Tamiru A. Abiye ◽  
Michael J. Butler ◽  
Kehinde O. Ibrahim
Mammalia ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jean-François Mboumba ◽  
Maxime R. Hervé ◽  
Véronique Guyot ◽  
Frederic Ysnel

Abstract The study contributes to the knowledge of species composition and biogeographical affinities of savannas rodent in Gabon. Unlike small rodents in Gabonese forests, there is little data on the diversity of small rodents in Gabonese savannas. The diversity and distribution of rodent murid communities was studied in four different types of savanna in Gabon: Coastal Basin (South-West), Lopé/Okanda (in the Center), Batéké Plateaux (Southeastern) and Ngougnié/ N’yanga (in the South). A total of 428 individuals representing six species were captured over 11,920 trap nights. Trap success was highly variable (2.2–6.9 %). The most abundant species were Mus minutoides (69%) followed by Lemniscomys striatus (21.5%). Indices of species richness varied from 2 to 5 and diversity (Shannon and Weaver) was low in the four savannas with the highest value at Ngougnié/N’yanga (H′ = 1.2). Species distributions show that Gabonese savanna small rodents conform to four distribution types, with one species known from Zambesian savannas exhibiting austral affinities (Pelomys campanae: occurs in three southern savannas). This new information provides important insight into the biogeography of small rodents at a local and regional level. Moreover, the correspondence analysis highlighted an influence of local ecological factors on population abundance.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 759
Author(s):  
Ioannis Vrouhakis ◽  
Evangelos Tziritis ◽  
Andreas Panagopoulos ◽  
Georgios Stamatis

A combined hydrogeochemical and hydrodynamic characterization for the assessment of key aspects related to groundwater resources management was performed in a highly productive agricultural basin of the Thessaly region in central Greece. A complementary suite of tools and methods—including graphical processing, hydrogeochemical modeling, multivariate statistics and environmental isotopes—have been applied to a comprehensive dataset of physicochemical analyses and water level measurements. Results revealed that the initial hydrogeochemistry of groundwater was progressively impacted by secondary phenomena (e.g., ion exchange and redox reactions) which were clearly delineated into distinct zones according to data processing. The progressive evolution of groundwater was further verified by the variation of the saturation indices of critical minerals. In addition, the combined use of water level measurements delineated the major pathways of groundwater flow. Interestingly, the additional joint assessment of environmental isotopes revealed a new pathway from E–NE (which had never before been validated), thus highlighting the importance of the joint tools/methods application in complex scientific tasks. The application of multivariate statistics identified the dominant processes that control hydrogeochemistry and fit well with identified hydrodynamic mechanisms. These included (as dominant factor) the salinization impact due to the combined use of irrigation water return and evaporitic mineral leaching, as well as the impact of the geogenic calcareous substrate (mainly karstic calcareous formations and dolostones). Secondary factors, acting as processes (e.g., redox and ion exchange), were identified and found to be in line with initial assessment, thus validating the overall characterization. Finally, the outcomes may prove to be valuable in the progression toward sustainable groundwater resources management. The results have provided spatial and temporal information for significant parameters, sources, and processes—which, as a methodological approach, could be adopted in similar cases of other catchments.


2014 ◽  
Vol 18 (12) ◽  
pp. 4951-4964 ◽  
Author(s):  
A. P. Atkinson ◽  
I. Cartwright ◽  
B. S. Gilfedder ◽  
D. I. Cendón ◽  
N. P. Unland ◽  
...  

Abstract. Knowledge of groundwater residence times and recharge locations is vital to the sustainable management of groundwater resources. Here we investigate groundwater residence times and patterns of recharge in the Gellibrand Valley, southeast Australia, where outcropping aquifer sediments of the Eastern View Formation form an "aquifer window" that may receive diffuse recharge from rainfall and recharge from the Gellibrand River. To determine recharge patterns and groundwater flow paths, environmental isotopes (3H, 14C, δ13C, δ18O, δ2H) are used in conjunction with groundwater geochemistry and continuous monitoring of groundwater elevation and electrical conductivity. The water table fluctuates by 0.9 to 3.7 m annually, implying recharge rates of 90 and 372 mm yr−1. However, residence times of shallow (11 to 29 m) groundwater determined by 14C are between 100 and 10 000 years, 3H activities are negligible in most of the groundwater, and groundwater electrical conductivity remains constant over the period of study. Deeper groundwater with older 14C ages has lower δ18O values than younger, shallower groundwater, which is consistent with it being derived from greater altitudes. The combined geochemistry data indicate that local recharge from precipitation within the valley occurs through the aquifer window, however much of the groundwater in the Gellibrand Valley predominantly originates from the regional recharge zone, the Barongarook High. The Gellibrand Valley is a regional discharge zone with upward head gradients that limits local recharge to the upper 10 m of the aquifer. Additionally, the groundwater head gradients adjacent to the Gellibrand River are generally upwards, implying that it does not recharge the surrounding groundwater and has limited bank storage. 14C ages and Cl concentrations are well correlated and Cl concentrations may be used to provide a first-order estimate of groundwater residence times. Progressively lower chloride concentrations from 10 000 years BP to the present day are interpreted to indicate an increase in recharge rates on the Barongarook High.


2013 ◽  
Vol 726-731 ◽  
pp. 3381-3384
Author(s):  
Bo Li ◽  
Yan Jun Wu ◽  
Bin Zhao

Based on the systematical analysis of hydrogeology, social economy and regional environment, choosing 23 indicators from four aspects of the groundwater resources condition, social economy, the ecological environment, Sustainability assessment system of groundwater resources for southwestern karst mountain area were established. Meanwhile, the weights of the indicators based on AHP were determined, which can reduce the fuzziness of man-made judgments. the sustainability of groundwater resources were evaluated and had a much better result by referring to the Weining area of Guizhou province. Thus, provide certain references for similar regional assessment.


Author(s):  
Nuong Thi Bui ◽  
Akira Kawamura ◽  
Hideo Amaguchi ◽  
Duong Du Bui ◽  
Ngoc Tu Truong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document