Sulfated diesters of okadaic acid and DTX-1: Self-protective precursors of diarrhetic shellfish poisoning (DSP) toxins

Harmful Algae ◽  
2017 ◽  
Vol 63 ◽  
pp. 85-93 ◽  
Author(s):  
Tingmo Hu ◽  
Patricia LeBlanc ◽  
Ian W. Burton ◽  
John A. Walter ◽  
Pearse McCarron ◽  
...  
2021 ◽  
Vol 9 (3) ◽  
pp. 293
Author(s):  
Mauro Corriere ◽  
Lucía Soliño ◽  
Pedro Reis Costa

Natural high proliferations of toxin-producing microorganisms in marine and freshwater environments result in dreadful consequences at the socioeconomically and environmental level due to water and seafood contamination. Monitoring programs and scientific evidence point to harmful algal blooms (HABs) increasing in frequency and intensity as a result of global climate alterations. Among marine toxins, the okadaic acid (OA) and the related dinophysistoxins (DTX) are the most frequently reported in EU waters, mainly in shellfish species. These toxins are responsible for human syndrome diarrhetic shellfish poisoning (DSP). Fish, like other marine species, are also exposed to HABs and their toxins. However, reduced attention has been given to exposure, accumulation, and effects on fish of DSP toxins, such as OA. The present review intends to summarize the current knowledge of the impact of DSP toxins and to identify the main issues needing further research. From data reviewed in this work, it is clear that exposure of fish to DSP toxins causes a range of negative effects, from behavioral and morphological alterations to death. However, there is still much to be investigated about the ecological and food safety risks related to contamination of fish with DSP toxins.


Harmful Algae ◽  
2006 ◽  
Vol 5 (2) ◽  
pp. 119-123 ◽  
Author(s):  
Thomas L. Madigan ◽  
Ken G. Lee ◽  
David J. Padula ◽  
Paul McNabb ◽  
Andrew M. Pointon

2012 ◽  
Vol 75 (11) ◽  
pp. 2000-2006 ◽  
Author(s):  
KA JEONG LEE ◽  
JONG SOO MOK ◽  
KI CHEOL SONG ◽  
HONGSIK YU ◽  
DOO SEOG LEE ◽  
...  

Okadaic acid (OA), dinophysistoxin-1 (DTX1), pectenotoxin-2, and yessotoxin (YTX) are classes of lipophilic toxins found in marine animals. OA and DTX1 accumulation causes diarrhetic shellfish poisoning, a worldwide public health problem. Diarrhetic shellfish poisoning has not previously been reported in gastropods, which are widely consumed in Korea. Seasonal variation in marine lipophilic toxins in gastropods was investigated using liquid chromatography–tandem mass spectrometry. Eighty specimens of Neptunea cumingii, 65 specimens of Rapana venosa, and 95 specimens of Batillus cornutus were collected at the Tongyeong fish market on the southern coast of Korea between May 2009 and December 2010. OA, DTX1, and YTX were detected in meat and digestive glands in all gastropod species studied. Pectenotoxin-2 was not found in any sample tested. Lipophilic toxins were detected in the digestive glands of gastropods; no lipophilic toxin was detected in the salivary glands of the carnivorous gastropods, N. cumingii and R. venosa. The highest concentrations of OA (21.5 ng/g) and DTX1 (8.4 ng/g) were detected in the digestive glands of R. venosa, and the maximum concentration of YTX (13.7 ng/g) was found in the digestive glands of N. cumingii. The maximum toxicities in gastropod tissues were lower than the European standard for acceptable levels. The concentrations of lipophilic toxins in carnivorous gastropods showed a high degree of seasonal variation; lipophilic toxins in carnivorous gastropods were found predominantly in spring and summer. This is the first report of the occurrence of lipophilic toxins in Korean gastropods.


2011 ◽  
Vol 184 (8) ◽  
pp. 5085-5095 ◽  
Author(s):  
Zina Armi ◽  
Souad Turki ◽  
Elbahri Trabelsi ◽  
Alfiero Ceredi ◽  
Elena Riccardi ◽  
...  

1995 ◽  
Vol 78 (2) ◽  
pp. 555-569 ◽  
Author(s):  
Michael A Quilliam

Abstract Diarrhetic shellfish poisoning (DSP) is a severe gastrointestinal illness caused by consumption of shellfish contaminated with toxigenic dinoflagellates. The main toxins responsible for DSP are okadaic acid (OA), DTX-1, DTX-2, and DTX-3, the latter being a complex mixture of 7-O-acyl derivatives of the first 3. In this study, existing methods based on liquid chromatography (LC) combined with mass spectrometry (LC–MS) and LC with fluorometric detection (LC–FLD) of anthryldiazomethane (ADAM) derivatives were improved upon to achieve a high degree of accuracy and precision for the determination of DSP toxins in a new mussel tissue reference material (MUS-2). All experimental parameters were examined comprehensively, and a new internal standard and a new solid-phase extraction cleanup method were introduced. Quantitative extraction of DSP toxins from shellfish tissue was achieved by exhaustive extraction with aqueous 80% methanol. Cleanup was accomplished by partitioning the crude aqueous methanol extract with hexane to remove lipids and then with chloroform to isolate the toxins. A further cleanup based on an aminopropylsilica column was useful for LC-MS and looks promising for the ADAM/LC-FLD method. The internal standard, 7-O-acetylokadaic acid, synthesized by partial acetylation of OA, improved accuracy and precision by correcting for incomplete recoveries in extraction, cleanup, and derivatization steps and for volumetric errors and instrumental drift. An improved silica cleanup after ADAM derivatization also was developed by controlling the activities of both sorbent and solvents. The methods were tested with various mussel tissue samples. The resulting improved methods will be useful to analysts involved in routine monitoring of DSP tox ins.


1986 ◽  
Vol 50 (11) ◽  
pp. 2853-2857 ◽  
Author(s):  
Masanori KUMAGAI ◽  
Toshihiko YANAGI ◽  
Michio MURATA ◽  
Takeshi YASUMOTO ◽  
Marie KAT ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document