diesel exhaust particles
Recently Published Documents


TOTAL DOCUMENTS

742
(FIVE YEARS 113)

H-INDEX

68
(FIVE YEARS 8)

Author(s):  
Rituraj Niranjan ◽  
Muthukumaravel Subramanian ◽  
Devaraju Panneer ◽  
Sanjay Kumar Ojha

Background: Diesel exhaust particulates (DEPs) affect lung physiology and cause serious damage to the lungs. A number of studies demonstrated that, eosinophils play a very important role in the development of tissue remodelling and fibrosis of lungs. However, the exact mechanism of pathogenesis of tissue remodelling and fibrosis is not known. Methods: Both in vitro and in vivo models were used in the study. HL-60 and A549 cells were used in the study. Balb/C mice of 8 to 12 weeks old were used for in vivo study. Cell viability by MTT assay, RNA isolation by tri reagent was accomplished. mRNA expression of inflammatory genes were accomplished by real time PCR or qPCR. Immunohistochemistry was done to asses the localization and expressions of proteins. One way ANOVA followed by post hoc test were done for the statistical analysis. Graph-Pad Prism software was used for statistical analysis. Results: We for the first time demonstrate that, Interleukin-13 plays a very important role in the development of tissue remodelling and fibrosis. We report that, diesel exhaust particles significantly induce eosinophils cell proliferation and interleukin-13 release in in vitro culture conditions. Supernatant collected from DEP-induced eosinophils cells significantly restrict cell proliferation of epithelial cells in response to exposure of diesel exhast particles. Furthermore, purified interleukin-13 decreases the proliferation of A549 cells, highliting the involvement of IL-13 in tissue remodeling. Notably, Etoricoxib (selective COX-2 inhibitor) did not inhibit DEP-triggered release of interleukin-13, suggesting another cell signalling pathway. The in vivo exposer of DEP to the lungs of mice, resulted in high level of eosinophils degranulation as depicted by the EPX-1 immunostaining and altered level of mRNA expressions of inflammatory genes. We also found that, a-SMA, fibroblast specific protein (FSP-1) has been changed in response to DEP in the mice lungs along with the mediators of inflammation. Conclusion: Altogether, we elucidated, the mechanistic role of eosinophils and IL-13 in the DEP-triggered proliferation of lungs cells thus providing an inside in the pathophysiology of tissue remodelling and fibrosis of lungs.


Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 99
Author(s):  
Abderrahim Nemmar ◽  
Sumaya Beegam ◽  
Nur Elena Zaaba ◽  
Salem Alblooshi ◽  
Saleh Alseiari ◽  
...  

Inhaled particulate air pollution exerts pulmonary inflammation and cardiovascular toxicity through secondary systemic effects due to oxidative stress and inflammation. Catalpol, an iridiod glucoside, extracted from the roots of Rehmannia glutinosa Libosch, has been reported to possess anti-inflammatory and antioxidant properties. Yet, the potential ameliorative effects of catalpol on particulate air pollution—induced cardiovascular toxicity, has not been studied so far. Hence, we evaluated the possible mitigating mechanism of catalpol (5 mg/kg) which was administered to mice by intraperitoneal injection one hour before the intratracheal (i.t.) administration of a relevant type of pollutant particle, viz. diesel exhaust particles (DEPs, 30 µg/mouse). Twenty-four hours after the lung deposition of DEPs, several cardiovascular endpoints were evaluated. DEPs caused a significant shortening of the thrombotic occlusion time in pial microvessels in vivo, induced platelet aggregation in vitro, and reduced the prothrombin time and the activated partial thromboplastin time. All these actions were effectively mitigated by catalpol pretreatment. Likewise, catalpol inhibited the increase of the plasma concentration of C-reactive proteins, fibrinogen, plasminogen activator inhibitor-1 and P- and E-selectins, induced by DEPs. Moreover, in heart tissue, catalpol inhibited the increase of markers of oxidative (lipid peroxidation and superoxide dismutase) and nitrosative (nitric oxide) stress, and inflammation (tumor necrosis factor α, interleukin (IL)-6 and IL-1β) triggered by lung exposure to DEPs. Exposure to DEPs also caused heart DNA damage and increased the levels of cytochrome C and cleaved caspase, and these effects were significantly diminished by the catalpol pretreatment. Moreover, catalpol significantly reduced the DEPs-induced increase of the nuclear factor κB (NFκB) in the heart. In conclusion, catalpol significantly ameliorated DEPs–induced procoagulant events and heart oxidative and nitrosative stress, inflammation, DNA damage and apoptosis, at least partly, through the inhibition of NFκB activation.


Author(s):  
Ji Young Kim ◽  
Seonmi Hong ◽  
Ochirpurev Bolormaa ◽  
Je Hoon Seo ◽  
Sang-Yong Eom ◽  
...  

2021 ◽  
pp. 1-2
Author(s):  
Michelle L. Block ◽  
Urmila P. Kodavanti

The mechanisms underlying how urban air pollution exposure conveys Alzheimer’s disease risk and affects plaque pathology is largely unknown. Because particulate matter, the particle component of urban air pollution, varies across location, pollution source, and time, a single model representative of all ambient particulate matter is unfeasible for research investigating the role of ar pollution in central nervous system diseases. More specifically, the investigation of several models of particulate matter with enrichment of source-specific components are essential to employ, in order to more fully understand what characteristics of particulate matter affects Alzheimer’s disease, including standardized diesel exhaust particles.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hahn Jin Jung ◽  
Young-Kyung Ko ◽  
Woo Sub Shim ◽  
Hyun Jik Kim ◽  
Dong-Young Kim ◽  
...  

AbstractDiesel exhaust particles (DEPs), traffic-related air pollutants, are considered environmental factors adversely affecting allergic diseases. However, the immunological basis for the adjuvant effects of DEP in allergic rhinitis (AR) remains unclear. Therefore, this study aimed to investigate the effect of DEP exposure on AR using a mouse model. BALB/c mice sensitized to house dust mite (HDM) were intranasally challenged with HDM in the presence and absence of DEP. Allergic symptom scores, serum total and HDM-specific immunoglobulins (Igs), eosinophil infiltration in the nasal mucosa, cytological profiles in bronchoalveolar lavage fluid (BALF), and cytokine levels in the nasal mucosa and spleen cell culture were analyzed. Mice co-exposed to HDM and DEP showed increased allergic symptom scores compared with mice exposed to HDM alone. Reduced total IgE and HDM-specific IgE and IgG1 levels, decreased eosinophil infiltration in the nasal mucosa, and increased proportion of neutrophils in BALF were found in mice co-exposed to HDM and DEP. Interleukin (IL)-17A level was found to be increased in the nasal mucosa of the co-exposure group compared with that in the HDM-exposed group. The levels of IL-4, IL-13, interferon-γ, IL-25, IL-33, and TSLP expression showed no difference between the groups with and without DEP treatment. Increased expression of IL-17A in the nasal mucosa may contribute to DEP-mediated exacerbation of AR in HDM-sensitized murine AR model.


Sign in / Sign up

Export Citation Format

Share Document