scholarly journals Angiogenic properties of dental pulp stem cells conditioned medium on endothelial cells in vitro and in rodent orthotopic dental pulp regeneration

Heliyon ◽  
2019 ◽  
Vol 5 (4) ◽  
pp. e01560 ◽  
Author(s):  
Sueli Patricia Harumi Miyagi de Cara ◽  
Clarice Silvia Taemi Origassa ◽  
Fernando de Sá Silva ◽  
Maria Stella N.A. Moreira ◽  
Danilo Candido de Almeida ◽  
...  
2015 ◽  
Vol 21 (3-4) ◽  
pp. 550-563 ◽  
Author(s):  
Waruna Lakmal Dissanayaka ◽  
Kenneth M. Hargreaves ◽  
Lijian Jin ◽  
Lakshman P. Samaranayake ◽  
Chengfei Zhang

2012 ◽  
Vol 38 (4) ◽  
pp. 454-463 ◽  
Author(s):  
Waruna Lakmal Dissanayaka ◽  
Xuan Zhan ◽  
Chengfei Zhang ◽  
Kenneth M. Hargreaves ◽  
Lijian Jin ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2252
Author(s):  
Jae Eun Kim ◽  
Sangbae Park ◽  
Woong-Sup Lee ◽  
Jinsub Han ◽  
Jae Woon Lim ◽  
...  

The use of bone graft materials is required for the treatment of bone defects damaged beyond the critical defect; therefore, injectable calcium phosphate cement (CPC) is actively used after surgery. The application of various polymers to improve injectability, mechanical strength, and biological function of injection-type CPC is encouraged. We previously developed a chitosan–PEG conjugate (CS/PEG) by a sulfur (VI) fluoride exchange reaction, and the resulting chitosan derivative showed high solubility at a neutral pH. We have demonstrated the CPC incorporated with a poly (ethylene glycol) (PEG)-grafted chitosan (CS/PEG) and developed CS/PEG CPC. The characterization of CS/PEG CPC was conducted using Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The initial properties of CS/PEG CPCs, such as the pH, porosity, mechanical strength, zeta potential, and in vitro biocompatibility using the WST-1 assay, were also investigated. Moreover, osteocompatibility of CS/PEG CPCs was carried out via Alizarin Red S staining, immunocytochemistry, and Western blot analysis. CS/PEG CPC has enhanced mechanical strength compared to CPC, and the cohesion test also demonstrated in vivo stability. Furthermore, we determined whether CS/PEG CPC is a suitable candidate for promoting the osteogenic ability of Dental Pulp Stem Cells (DPSC). The elution of CS/PEG CPC entraps more calcium ion than CPC, as confirmed through the zeta potential test. Accordingly, the ion trapping effect of CS/PEG is considered to have played a role in promoting osteogenic differentiation of DPSCs. The results strongly suggested that CS/PEG could be used as suitable additives for improving osteogenic induction of bone substitute materials.


2021 ◽  
Vol 132 (8) ◽  
pp. e82-e83
Author(s):  
Sivapriya Senthilkumar ◽  
Chaitra Venugopal ◽  
K. Shobha ◽  
Bindu M. Kutty ◽  
Anandh Dhanushkodi

2017 ◽  
Vol 50 (5) ◽  
pp. e12361 ◽  
Author(s):  
Xuexin Zhang ◽  
Hui Li ◽  
Jingjing Sun ◽  
Xiangyou Luo ◽  
Hefeng Yang ◽  
...  

2021 ◽  
Vol 02 (03) ◽  
Author(s):  
Saberian E ◽  
Jalili Sadrabad M ◽  
Petrasova A ◽  
Izadi A

Human Cell ◽  
2018 ◽  
Vol 32 (2) ◽  
pp. 114-124
Author(s):  
Miho Watanabe ◽  
Akihiro Ohyama ◽  
Hiroshi Ishikawa ◽  
Akira Tanaka

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Shion Orikasa ◽  
Nobuyuki Kawashima ◽  
Kento Tazawa ◽  
Kentaro Hashimoto ◽  
Keisuke Sunada-Nara ◽  
...  

AbstractAccelerated dental pulp mineralization is a common complication in avulsed/luxated teeth, although the mechanisms underlying this remain unclear. We hypothesized that hypoxia due to vascular severance may induce osteo/odontoblast differentiation of dental pulp stem cells (DPSCs). This study examined the role of B-cell CLL/lymphoma 9 (BCL9), which is downstream of hypoxia-inducible factor 1α (HIF1α) and a Wnt/β-catenin transcriptional cofactor, in the osteo/odontoblastic differentiation of human DPSCs (hDPSCs) under hypoxic conditions. hDPSCs were isolated from extracted healthy wisdom teeth. Hypoxic conditions and HIF1α overexpression induced significant upregulation of mRNAs for osteo/odontoblast markers (RUNX2, ALP, OC), BCL9, and Wnt/β-catenin signaling target genes (AXIN2, TCF1) in hDPSCs. Overexpression and suppression of BCL9 in hDPSCs up- and downregulated, respectively, the mRNAs for AXIN2, TCF1, and the osteo/odontoblast markers. Hypoxic-cultured mouse pulp tissue explants showed the promotion of HIF1α, BCL9, and β-catenin expression and BCL9-β-catenin co-localization. In addition, BCL9 formed a complex with β-catenin in hDPSCs in vitro. This study demonstrated that hypoxia/HIF1α-induced osteo/odontoblast differentiation of hDPSCs was partially dependent on Wnt/β-catenin signaling, where BCL9 acted as a key mediator between HIF1α and Wnt/β-catenin signaling. These findings may reveal part of the mechanisms of dental pulp mineralization after traumatic dental injury.


Sign in / Sign up

Export Citation Format

Share Document