scholarly journals Pre- and post-surgical evaluation of plasma lactate concentration in 45 dogs with gastric dilatation-volvulus: A preliminary study

Heliyon ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. e03307
Author(s):  
Lisa Grassato ◽  
Giuseppe Spinella ◽  
Vincenzo Musella ◽  
Massimo Giunti ◽  
José Manuel Vilar ◽  
...  
2015 ◽  
Vol 43 (06) ◽  
pp. 389-398 ◽  
Author(s):  
A. Moritz ◽  
M. Kramer ◽  
N. Bauer ◽  
J. Verschoof

Summary Objective: Prospective characterization of hemostastatic variables, plasma lactate concentration, and inflammatory biomarkers in dogs with gastric dilatation-volvulus (GDV). Material and methods: Coagulation variables (platelets, prothrombin time [PT], activated partial thromboplastin time [aPTT], fibrinogen, antithrombin [AT], protein C [PC], protein S [PS], D-dimers), plasma lactate concentration and inflammatory biomarkers (C-reactive protein, white blood cell [WBC] count, lymphocyte and neutrophil numbers) were assessed in 20 dogs with GDV presented between 2011 and 2012. Blood was taken preoperatively and at days 1 and 3 postoperatively. The prognostic value of these variables before and after surgery was evaluated as well as the behavior of variables during the study. Results: Overall, 7/20 (35%) dogs did not survive; two dogs (29%) were euthanized during surgery due to severe gastric necrosis and 5 (71%) dogs after surgery due to sepsis and disseminated intravascular coagulopathy. Prior to surgery, median plasma lactate concentration was significantly (p = 0.01) lower in survivors (6.2 mmol/l, range 1.9–9.7 mmol/l) when compared to non-survivors (11.8 mmol/l, range 7.5–16.2 mmol/l). In dogs dying after surgery, significantly higher plasma lactate concentration, coagulation times and D-dimer concentration were present as well as lower fibrinogen concentration and activity of PC and AT compared to survivors. At discharge, activity of AT, PC and PS were markedly below the reference interval in 6/13 (46%), 11/13 (85%), and 8/13 (62%) dogs, respectively. Clinical relevance: Only lactate plasma concentration was of preoperative prognostic value. After surgery, severe abnormalities of coagulation variables, especially the endogenous anticoagulants were present in most of the dogs. The severity of the abnormalities was associated with survival.


1977 ◽  
Vol 232 (2) ◽  
pp. E180 ◽  
Author(s):  
R R Wolfe ◽  
D Elahi ◽  
J J Spitzer

We studied the effects of E. coli endotoxin on the glucose and lactate kinetics in dogs by means of the primed constant infusion of [6(-3)H] glucose and Na-L-(+)-[U-14C] lactate. The infusion of endotoxin induced a transient hyperglycemic level, followed by a steady fall in plasma glucose to hypoglycemic levels. The rate of appearance (Ra) and the rate of disappearance (Rd) of glucose were both significantly elevated (P less than .05) for 150 min after endotoxin, after which neither differed from the preinfusion value. The metabolic clearance rate of glucose was significantly elevated at all times 30 min postendotoxin. By 30 min postendotoxin, Ra and Rd of lactate, plasma lactate concentration, and the percent of glucose turnover originating from lactate were significantly elevated and remained so for the duration of the experiment. We concluded that after endotoxin hypoglycemia developed because of an enhanced peripheral uptake of glucose and a failure of the liver to maintain an increased Ra of glucose. We also concluded that lactate became an important precursor for gluconeogenesis and an important metabolic substrate.


1988 ◽  
Vol 255 (5) ◽  
pp. E629-E635 ◽  
Author(s):  
D. M. Hargrove ◽  
G. J. Bagby ◽  
C. H. Lang ◽  
J. J. Spitzer

Combined alpha- and beta-adrenergic blockade was used to investigate the role of catecholamines in endotoxin-induced elevations in glucose kinetics. Glucose kinetics were measured before and for 4 h after the injection of endotoxin [100 micrograms/100 g body wt iv, 30% lethal dose (LD30) at 24 h]. Adrenergic blockade was achieved by the bolus injection of phentolamine and propranolol followed by their continuous infusion. Endotoxin-treated rats exhibited a transient hyperglycemia and sustained (greater than 4 h) increase in plasma lactate concentration, as well as elevated rates of glucose appearance (Ra, 83%), disappearance (Rd, 58%), recycling (160%), and metabolic clearance (23%). Adrenergic blockade prevented endotoxin-induced increases in plasma glucose concentration, Ra, Rd, and recycling but not glucose clearance. The increase in plasma lactate concentration was blunted by 35%. After 2 h, endotoxic animals infused with adrenergic antagonists developed hypoglycemia, which may have resulted from an increased plasma insulin concentration. The attenuation of elevated glucose turnover by adrenergic blockade in the endotoxin-treated animals was not due to a reduction in plasma glucagon level or differences in plasma insulin concentration. Administration of the alpha- or beta-adrenergic antagonists separately blunted but did not prevent endotoxin-induced changes in glucose kinetics, and therefore the efficacy of the adrenergic blockade could not be assigned to a single receptor class. These results indicate that catecholamines are important contributory factors to many of the early alterations in carbohydrate metabolism observed during endotoxemia.


1986 ◽  
Vol 60 (3) ◽  
pp. 777-781 ◽  
Author(s):  
J. Simon ◽  
J. L. Young ◽  
D. K. Blood ◽  
K. R. Segal ◽  
R. B. Case ◽  
...  

Six trained male cyclists and six untrained sedentary men were studied to determine whether the plasma lactate threshold (PLT) and ventilation threshold (VT) occur at the same work rate in both fit and unfit populations. The PLT was determined from a marked increase in plasma lactate concentration ([La]) and VT from a nonlinear increase in expired minute ventilation (VE) during incremental leg-cycling tests; work rate was increased 30 W every 2 min until volitional exhaustion. The trained subjects' mean VO2 max (63.8 ml O2 X kg-1 X min-1) and VT (65.8% VO2 max) were significantly higher (P less than 0.05) than the untrained subjects' mean VO2max (35.5 ml O2 X kg-1 X min-1) and VT (51.4% VO2 max). The trained subjects' mean PLT (68.8% VO2 max) and VT did not differ significantly, but the untrained subjects' mean PLT (61.6% VO2 max) was significantly higher than their VT. The trained subjects' mean peak [La] (10.5 mmol X l-1) did not differ significantly from the untrained subjects' mean peak [La] (11.5 mmol X l-1). However, the time of appearance of the peak [La] during passive recovery was inversely related to VO2 max. These results suggest that variance in lactate diffusion and/or removal processes between the trained and untrained subjects may account in part for the different relationships between the VT and PLT in each population.


1997 ◽  
Vol 200 (24) ◽  
pp. 3091-3099 ◽  
Author(s):  
S A Shaffer ◽  
D P Costa ◽  
T M Williams ◽  
S H Ridgway

The white whale Delphinapterus leucas is an exceptional diver, yet we know little about the physiology that enables this species to make prolonged dives. We studied trained white whales with the specific goal of assessing their diving and swimming performance. Two adult whales performed dives to a test platform suspended at depths of 5-300 m. Behavior was monitored for 457 dives with durations of 2.2-13.3 min. Descent rates were generally less than 2 m s-1 and ascent rates averaged 2.2-3 m s-1. Post-dive plasma lactate concentration increased to as much as 3.4 mmol l-1 (4-5 times the resting level) after dives of 11 min. Mixed venous PO2 measured during voluntary breath-holds decreased from 79 to 20 mmHg within 10 min; however, maximum breath-hold duration was 17 min. Swimming performance was examined by training the whales to follow a boat at speeds of 1.4-4.2 m s-1. Respiratory rates ranged from 1.6 breaths min-1 at rest to 5.5 breaths min-1 during exercise and decreased with increasing swim speed. Post-exercise plasma lactate level increased to 1.8 mmol l-1 (2-3 times the resting level) following 10 min exercise sessions at swimming speeds of 2.5-2.8 m s-1. The results of this study are consistent with the calculated aerobic dive limit (O2 store/metabolic rate) of 9-10 min. In addition, white whales are not well adapted for high-speed swimming compared with other small cetaceans.


Author(s):  
Stephen R. Stannard ◽  
Martin W. Thompson ◽  
Janette C. Brand Miller

Consumption of low glycemic index (GI) foods before submaximal endurance exercise may be beneficial to performance. To test whether this may also be true for high intensity exercise. 10 trained cyclists began an incremental exercise test to exhaustion 65 min after consuming equal carbohydrate portions of glucose (HGI), pasta (LGI), and a noncarbohydrate control (PL). Time to fatigue did not differ significantly (p = 0.05) between treatments. Plasma glucose concentration was significantly lower after LGI vs. HGI from 15 to 45 min of rest postprandial. During exercise, plasma glucose concentration was significantly lower after HGI vs. LGI from 200 W until exhaustion. Plasma lactate concentration following HGI was significantly higher than PL from 30 min of rest postprandial through to the end of the 200-W workload. Plasma lactate concentration following LGI was significantly lower than after HGI from 45 min of rest postprandial through to the end of the 100-W workload. At higher exercise intensities, there was no significant difference in plasma lactate levels between treatments. These findings suggest that a high GI carbohydrate meal (1 g/kg body wt) 65 min prior to exercise decreases plasma glucose and increases plasma lactate levels compared to a low GI meal, but not enough to be detrimental to incremental exercise performance.


Sign in / Sign up

Export Citation Format

Share Document