scholarly journals Harbor and coastal structures: A review of mechanical fatigue under random wave loading

Heliyon ◽  
2021 ◽  
pp. e08241
Author(s):  
Moises Jimenez-Martinez
Author(s):  
M. K. Abu Husain ◽  
N. I. Mohd Zaki ◽  
M. B. Johari ◽  
G. Najafian

For an offshore structure, wind, wave, current, tide, ice and gravitational forces are all important sources of loading which exhibit a high degree of statistical uncertainty. The capability to predict the probability distribution of the response extreme values during the service life of the structure is essential for safe and economical design of these structures. Many different techniques have been introduced for evaluation of statistical properties of response. In each case, sea-states are characterised by an appropriate water surface elevation spectrum, covering a wide range of frequencies. In reality, the most versatile and reliable technique for predicting the statistical properties of the response of an offshore structure to random wave loading is the time domain simulation technique. To this end, conventional time simulation (CTS) procedure or commonly called Monte Carlo time simulation method is the best known technique for predicting the short-term and long-term statistical properties of the response of an offshore structure to random wave loading due to its capability of accounting for various nonlinearities. However, this technique requires very long simulations in order to reduce the sampling variability to acceptable levels. In this paper, the effect of sampling variability of a Monte Carlo technique is investigated.


Author(s):  
A. Basmat

The purpose of this paper is to develop mathematical models to investigate the interaction between long non-linear water waves and dissipative/absorbing coastal structures. The diffraction of a plane second-order solitary wave at a vertical permeable plane barrier standing in front of an impermeable wall, with calculation of the second-order wave loading is investigated. An incident plane second-order solitary wave is the Laitone solution of Boussinesq equations. The analytical solution is obtained by means of a small parameter development and Fourier transformation techniques. Computational results were performed using the software MATHEMATICA version 4.0.1.0.


Author(s):  
M. K. Abu Husain ◽  
N. I. Mohd Zaki ◽  
G. Najafian

Offshore structures are exposed to random wave loading in the ocean environment and hence the probability distribution of the extreme values of their response to wave loading is required for their safe and economical design. To this end, the conventional (Monte Carlo) time simulation technique (CTS) is frequently used for predicting the probability distribution of the extreme values of response. However, this technique suffers from excessive sampling variability and hence a large number of simulated extreme responses (hundreds of simulated response records) are required to reduce the sampling variability to acceptable levels. In this paper, three different versions of a more efficient time simulation technique (ETS) are compared by exposing a test structure to sea states of different intensity. The three different versions of the ETS technique take advantage of the good correlation between extreme responses and their corresponding surface elevation extreme values, or quasi-static and dynamic linear extreme responses.


1996 ◽  
Vol 118 (2) ◽  
pp. 109-114 ◽  
Author(s):  
L. Manuel ◽  
C. A. Cornell

A study is conducted of the response of a jack-up rig to random wave loading. Steady current and wind load effects are also included. The effects of varying the relative motion assumption (in the Morison equation) and of varying the bottom fixity assumptions are investigated. One “fixity” model employs nonlinear soil springs. Time domain simulations are performed using linearized as well as fully nonlinear models for the jack-up rig. Comparisons of response statistics are made for two seastates. Hydrodynamic damping causes the rms response to be lower in the relative Morison case. The absence of this source of damping in the absolute Morison force model gives rise to larger resonance/dynamic effects—this tends to “Gaussianize” the response. Hence, the relative Morison model leads to stronger non-Gaussian behavior than the absolute Morison model. This is reflected in moments as well as extremes. The different support conditions studied are seen to significantly influence extreme response estimates. In general, stiffer models predict smaller rms response estimates, but also exhibit stronger non-Gaussian behavior. The choice of the Morison force modeling assumption (i.e., the relative versus the absolute motion formulation) is seen to have at least a secondary role in influencing response moments and extremes.


Author(s):  
Konstantinos Chatziioannou ◽  
Vanessa Katsardi ◽  
Apostolos Koukouselis ◽  
Euripidis Mistakidis

The purpose of this work is to highlight the importance of considering the actual nonlinear dynamic response for the analysis and design of fixed deep water platforms. The paper highlights the necessity of applying dynamic analysis through the comparison with the results obtained by the authors by applying static nonlinear analysis on the structure under examination. The example treated in the context of the present paper is a compliant tower, set-up in deep water. Nonlinearities are considered both for the calculation of the wave loadings and the structural analysis. The wave loading is based on linear random wave theory and comparisons are provided with the steady wave theories, Airy and Stokes 5th. The former solution is based on the most probable shape of a large linear wave on a given sea-state; the auto-correlation function of the underlying spectrum. On the other hand, in the field of structural analysis, two cases are considered for comparison, static analysis and time history dynamic analysis. For both types of analysis, two sub-cases are considered, a case in which geometric nonlinearity and nonlinearities related to the modelling of the soil are considered and a case in which the corresponding linear theories are employed (reference cases). The structural calculations were performed using the well-known structural analysis software SAP2000, which was enhanced by a special programming interface that was developed to calculate the wave loading and to directly apply the generated loads on the structural members. The results show that the consideration of the particle velocities associated with the linear random wave theory in the wave loading lead to significant differences with respect to the steady wave theories in terms of the displacements and stresses of the structure. Moreover, irrespectively of the adopted wave theory, the nonlinear analyses lead to significant discrepancies with respect to the linear ones. This is mainly associated with the nonlinear properties of the soil. Another source of discrepancies between the results of static and dynamic analyses stems from the change of the effective natural frequency of the structure when nonlinearities are considered.


Author(s):  
Y. Wang ◽  
H. Mallahzadeh ◽  
M. K. Abu Husain ◽  
N. I. Mohd Zaki ◽  
G. Najafian

Offshore structures are exposed to random wave loading in the ocean environment and hence the probability distribution of the extreme values of their response to wave loading is required for their safe and economical design. This paper investigates the suitability of the Gumbel, the Generalized Extreme Value (GEV), and the Generalized Pareto (GP) distributions for modelling of extreme responses by comparing them with empirical distributions derived from extensive Monte Carlo time simulations. It will be shown that none of these distributions can model the extreme values adequately but that a mixed distribution consisting of both GEV and GP distributions seems to be capable of modelling the extreme responses with very good accuracy.


Author(s):  
M. K. Abu Husain ◽  
G. Najafian

Offshore structures are exposed to random wave loading in the ocean environment and hence the probability distribution of the extreme values of their response to wave loading is required for their safe and economical design. To this end, the conventional simulation technique (CTS) is frequently used for predicting the probability distribution of the extreme values of response. However, this technique suffers from excessive sampling variability and hence a large number of simulated response extreme values (hundreds of simulated response records) are required to reduce the sampling variability to acceptable levels. In this paper, a more efficient version of the time simulation technique (ETS) is introduced to derive the probability distribution of response extreme values from a much smaller sample of simulated extreme values.


Author(s):  
Carmen Castillo ◽  
Álvaro Galán ◽  
Raquel Balmaseda ◽  
Ana María Díaz ◽  
Elena Calcerrada

In many countries worldwide, a strong economical effort in the construction of coastal infrastructures has already been faced. Nowadays, due to the financial crisis, most of the efforts are devoted to the conservation and maintenance of coastal structures instead of building new ones. Furthermore, the expected variations in sea level and met-ocean conditions due to climate change modify the stochastic nature of both wave loading and structural response which is different nowadays from that at the time the structures were designed. These facts encourage the coastal engineering community towards the development of reliable risk management and decision-making tools. A key point in the decision-making process is how to prioritize investments when deciding about adaptation or mitigation alternatives. This paper aims at providing a proposal including tips to select among the possible alternatives based on risk analysis and how each alternative modifies the risk level compared to the do-nothing alternative. An example on a Spanish port will be provided for better understanding.


Author(s):  
Leopoldo Franco ◽  
Yuri Pepi ◽  
Stefano de Finis ◽  
Verdiana Iorio ◽  
Giorgio Bellotti ◽  
...  

Nowadays one of the most challenging problem for engineers is to adapt existing coastal structures to climate changes. Wave overtopping is highly sensitive to the increasing extreme water depths due to higher storm surges coupled with sea level rise. One way to face these problems for rubble mound breakwaters is to add one or more layers to the existing armour. Prediction of wave overtopping of coastal structures is presently obtained from empirical formulae in EurOtop (2018). For the case of overtopping over multi-layer armour, no validated method exists, so prediction must be based upon assumptions and judgement, with related uncertainties. This study is focused on the effects of different types of armour, the number of layer and other structural characteristics on the roughness factor f. The main effects of porosity and roughness will be investigated. This paper analyzes the results of several new physical model tests of different rubble mound breakwaters reproduced at the new medium scale random wave flume of the Department of Engineering of Roma Tre University.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/8cOdqkqQ-9s


Sign in / Sign up

Export Citation Format

Share Document