A novel Ventricular map of Electrograms DUration as a Method to identify areas of slow conduction for ventricular tachycardia ablation. The VEDUM pilot study

Heart Rhythm ◽  
2021 ◽  
Author(s):  
Pietro Rossi ◽  
Filippo M. Cauti ◽  
Marta Niscola ◽  
Federico Calore ◽  
Veronica Fanti ◽  
...  
2020 ◽  
pp. 1-3
Author(s):  
Keiko Toyohara ◽  
Yasuko Tomizawa ◽  
Morio Shoda

Abstract We report a case with Ebstein’s anomaly and pulmonary atresia with sustained monomorphic ventricular tachycardia in a patient without a ventriculotomy history. In the low voltage area between the atrialised right ventricle and hypoplastic right ventricle, there was a ventricular tachycardia substrate and slow conduction. The tachycardia circuit was eliminated by a point catheter ablation at the area with diastolic fractionated potentials.


EP Europace ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 598-606
Author(s):  
Ivo Roca-Luque ◽  
Ana Van Breukelen ◽  
Francisco Alarcon ◽  
Paz Garre ◽  
Jose M Tolosana ◽  
...  

Abstract Aims Ventricular tachycardia (VT) substrate-based ablation has become a standard procedure. Electroanatomical mapping (EAM) detects scar tissue heterogeneity and define conduction channels (CCs) that are the ablation target. Late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) is able to depict CCs and increase ablation success. Most patients undergoing VT ablation have an implantable cardioverter-defibrillator (ICD) that can cause image artefacts in LGE-CMR. Recently wideband (WB) LGE-CMR sequence has demonstrated to decrease these artefacts. The aim of this study is to analyse accuracy of WB-LGE-CMR in identifying the CC entrances. Methods and results Thirteen consecutive ICD-patients who underwent VT ablation after WB-LGE-CMR were included. Number and location of CC entrances in three-dimensional EAM and in WB-LGE-CMR reconstruction were compared. Concordance was compared with a historical cohort matched by cardiomyopathy, scar location, and age (26 patients) with LGE-CMR prior to ICD and VT ablation. In WB-CMR group, 101 and 93 CC entrances were identified in EAM and WB-LGE-CMR, respectively. In historical cohort, 179 CC entrances were identified in both EAM and LGE-CMR. The EAM/CMR concordance was 85.1% and 92.2% in the WB and historical group, respectively (P = 0.66). There were no differences in false-positive rate (CC entrances detected in CMR and absent in EAM: 7.5% vs 7.8% in WB vs. conventional CMR, P = 0.92) nor in false-negative rate (CC entrances present in EAM not detected in CMR: 14.9% vs.7.8% in WB vs. conventional CMR, P = 0.23). Epicardial CCs was predictor of poor CMR/EAM concordance (OR 2.15, P = 0.031). Conclusion Use of WB-LGE-CMR sequence in ICD-patients allows adequate VT substrate characterization to guide VT ablation with similar accuracy than conventional LGE-CMR in patients without an ICD.


2001 ◽  
Vol 12 (6) ◽  
pp. 662-670 ◽  
Author(s):  
PASCAL F.H.M. DESSEL ◽  
JACQUES M. BAKKER ◽  
NORBERT M. HEMEL ◽  
ANDRE C. LINNENBANK ◽  
EMILE R. JESSURUN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document