Ventricular scar channel entrances identified by new wideband cardiac magnetic resonance sequence to guide ventricular tachycardia ablation in patients with cardiac defibrillators

EP Europace ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 598-606
Author(s):  
Ivo Roca-Luque ◽  
Ana Van Breukelen ◽  
Francisco Alarcon ◽  
Paz Garre ◽  
Jose M Tolosana ◽  
...  

Abstract Aims Ventricular tachycardia (VT) substrate-based ablation has become a standard procedure. Electroanatomical mapping (EAM) detects scar tissue heterogeneity and define conduction channels (CCs) that are the ablation target. Late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) is able to depict CCs and increase ablation success. Most patients undergoing VT ablation have an implantable cardioverter-defibrillator (ICD) that can cause image artefacts in LGE-CMR. Recently wideband (WB) LGE-CMR sequence has demonstrated to decrease these artefacts. The aim of this study is to analyse accuracy of WB-LGE-CMR in identifying the CC entrances. Methods and results Thirteen consecutive ICD-patients who underwent VT ablation after WB-LGE-CMR were included. Number and location of CC entrances in three-dimensional EAM and in WB-LGE-CMR reconstruction were compared. Concordance was compared with a historical cohort matched by cardiomyopathy, scar location, and age (26 patients) with LGE-CMR prior to ICD and VT ablation. In WB-CMR group, 101 and 93 CC entrances were identified in EAM and WB-LGE-CMR, respectively. In historical cohort, 179 CC entrances were identified in both EAM and LGE-CMR. The EAM/CMR concordance was 85.1% and 92.2% in the WB and historical group, respectively (P = 0.66). There were no differences in false-positive rate (CC entrances detected in CMR and absent in EAM: 7.5% vs 7.8% in WB vs. conventional CMR, P = 0.92) nor in false-negative rate (CC entrances present in EAM not detected in CMR: 14.9% vs.7.8% in WB vs. conventional CMR, P = 0.23). Epicardial CCs was predictor of poor CMR/EAM concordance (OR 2.15, P = 0.031). Conclusion Use of WB-LGE-CMR sequence in ICD-patients allows adequate VT substrate characterization to guide VT ablation with similar accuracy than conventional LGE-CMR in patients without an ICD.

EP Europace ◽  
2019 ◽  
Vol 21 (9) ◽  
pp. 1392-1399
Author(s):  
Federica Torri ◽  
Csilla Czimbalmos ◽  
Livio Bertagnolli ◽  
Sabrina Oebel ◽  
Andreas Bollmann ◽  
...  

Abstract Aims We sought to investigate the overlap between late gadolinium enhancement (LGE) in cardiac magnetic resonance (CMR) and electro-anatomical maps (EAM) of patients with non-ischaemic dilated cardiomyopathy (NIDCM) and how it relates with the outcomes after catheter ablation of ventricular arrhythmias (VA). Methods and results We identified 50 patients with NIDCM who received CMR and ablation for VA. Late gadolinium enhancement was detected in 16 (32%) patients, mostly in those presenting with sustained ventricular tachycardia (VT): 15 patients. Low-voltage areas (<1.5 mV) were observed in 23 (46%) cases; in 7 (14%) cases without evidence of LGE. Using a threshold of 1.5 mV, a good and partially good agreement between the bipolar EAM and LGE-CMR was observed in only 4 (8%) and 9 (18%) patients, respectively. With further adjustments of EAM to match the LGE, we defined new cut-off limits of median 1.5 and 5 mV for bipolar and unipolar maps, respectively. Most VT exits (12 out of 16 patients) were found in areas with LGE. VT exits were found in segments without LGE in two patients with VT recurrence as well as in two patients without recurrence, P = 0.77. In patients with VT recurrence, the LGE volume was significantly larger than in those without recurrence: 12% ± 5.8% vs. 6.9% ± 3.4%; P = 0.049. Conclusions In NIDCM, the agreement between LGE and bipolar EAM was fairly poor but can be improved with adjustment of the thresholds for EAM according to the amount of LGE. The outcomes were related to the volume of LGE.


EP Europace ◽  
2020 ◽  
Author(s):  
Beatriz Jáuregui ◽  
David Soto-Iglesias ◽  
Giulio Zucchelli ◽  
Diego Penela ◽  
Augusto Ordóñez ◽  
...  

Abstract Aims Late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) permits characterizing ischaemic scars, detecting heterogeneous tissue channels (HTCs) which constitute the arrhythmogenic substrate (AS). Late gadolinium enhancement cardiac magnetic resonance also improves the arrhythmia-free survival when used to guide ventricular tachycardia (VT) substrate ablation. However, its availability may be limited. We sought to evaluate the performance of multidetector cardiac computed tomography (MDCT) imaging in identifying HTCs detected by LGE-CMR in ischaemic patients undergoing VT substrate ablation. Methods and results Thirty ischaemic patients undergoing both LGE-CMR and MDCT before VT substrate ablation were included. Using a dedicated post-processing software, two blinded operators, assigned either to LGE-CMR or MDCT analysis, characterized the presence of CMR and computed tomography (CT) channels, respectively. Cardiac magnetic resonance channels were classified as endocardial (layers &lt; 50%), epicardial (layers ≥ 50%), or transmural. Cardiac magnetic resonance- vs. CT-channel concordance was considered when showing the same orientation and American Heart Association (AHA) segment. Mean age was 69 ± 10 years; 90% were male. Mean left ventricular ejection fraction was 35 ± 10%. All patients had CMR channels (n = 76), whereas only 26/30 (86.7%) had CT channels (n = 91). Global sensitivity (Se) and positive predictive values for detecting CMR channels were 61.8% and 51.6%, respectively. MDCT performance improved in patients with epicardial CMR channels (Se 80.5%) and transmural scars (Se 72.2%). In 4/11 (36%) patients with subendocardial myocardial infarction (MI), MDCT was unable to identify the AS. Conclusions Compared to LGE-CMR, myocardial wall thickness assessment using MDCT fails to detect the presence of AS in 36% of patients with subendocardial MI, showing modest sensitivity identifying HTCs but a better performance in patients with transmural scars.


2019 ◽  
Vol 58 (6) ◽  
pp. 671-676
Author(s):  
Amy M. West ◽  
Pierre A. d’Hemecourt ◽  
Olivia J. Bono ◽  
Lyle J. Micheli ◽  
Dai Sugimoto

The objective of this study was to determine diagnostic accuracy of magnetic resonance imaging (MRI) and computed tomography (CT) scans in young athletes diagnosed with spondylolysis. A cross-sectional study was used. Twenty-two young athletes (14.7 ± 1.5 years) were diagnosed as spondylolysis based on a single-photon emission CT. Following the diagnosis, participants underwent MRI and CT scan imaging tests on the same day. The sensitivity and false-negative rate of the MRI and CT scans were analyzed. MRI test confirmed 13 (+) and 9 (−) results while CT test showed 17 (+) and 5 (−) results. The sensitivity and false-negative rate of MRI were, respectively, 59.1% (95% confidence interval [CI] = 36.7% to 78.5%) and 40.9% (95% CI = 21.5% to 63.3%). Furthermore, the sensitivity and false-negative rate of CT scan were 77.3% (95% CI = 54.2% to 91.3%) and 22.7% (95% CI = 0.09% to 45.8%). Our results indicated that CT scan is a more accurate imaging modality to diagnose spondylolysis compared with MRI in young athletes.


2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
S Younus ◽  
H Maqsood ◽  
A Gulraiz ◽  
MD Khan ◽  
R Awais

Abstract Funding Acknowledgements Type of funding sources: Other. Main funding source(s): Self Introduction Malignant ventricular arrhythmia contributes to approximately half of the sudden cardiac deaths. In common practice, echocardiography is used to identify structural heart diseases that are the most frequent substrate of VA. Identification and prognostication of structural heart diseases are very important as they are the main determinant of poor prognosis of ventricular arrhythmia. Purpose : The objective of this study is to determine whether cardiac magnetic resonance (CMR) may identify structural heart disease (SHD) in patients with ventricular arrhythmia who had no pathology observed on echocardiography. Methods : A total of 864 consecutive patients were enrolled in this single-center prospective study with significant ventricular arrhythmia. VA was characterized as &gt;1000 ventricular ectopic beats per 24 hours, non-sustained ventricular arrhythmia, sustained ventricular arrhythmia, and no pathological lesion on echocardiography. The primary endpoint was the detection of SHD with CMR. Secondary endpoints were a composite of CMR detection of SHD and abnormal findings not specific for a definite SHD diagnosis. Results : CMR studies were used to diagnose SHD in 212 patients (24.5%) and abnormal findings not specific for a definite SHD diagnosis in 153 patients (17.7%). Myocarditis (n = 84) was the more frequent disease, followed by arrhythmogenic cardiomyopathy (n = 51), ischemic heart disease (n = 32), dilated cardiomyopathy (n = 17), hypertrophic cardiomyopathy (n = 12), congenital cardiac disease (n = 08), left ventricle noncompaction (n = 5), and pericarditis (n = 3). The strongest univariate and multivariate predictors of SHD on CMR images were chest pain (odds ratios [OR]: 2.5 and 2.33, respectively) and sustained ventricular tachycardia (ORs: 2.62 and 2.21, respectively). Conclusion : Our study concludes that SHD was able to be identified on CMR imaging in a significant number of patients with malignant VA and completely normal echocardiography. Chest pain and sustained ventricular tachycardia were the two strongest predictors of positive CMR imaging results. Abstract Figure. Distribution of different SHD


Sign in / Sign up

Export Citation Format

Share Document