Role of the mitogen-activated protein kinase and phosphoinositide 3-kinase/AKT pathways downstream molecules, phosphorylated extracellular signal–regulated kinase, and phosphorylated AKT in colorectal cancer—A tissue microarray–based approach☆

2006 ◽  
Vol 37 (8) ◽  
pp. 1022-1031 ◽  
Author(s):  
A LUGLI ◽  
I ZLOBEC ◽  
P MINOO ◽  
K BAKER ◽  
L TORNILLO ◽  
...  
2019 ◽  
Vol 39 (6) ◽  
Author(s):  
N. Ronkina ◽  
K. Schuster-Gossler ◽  
F. Hansmann ◽  
H. Kunze-Schumacher ◽  
I. Sandrock ◽  
...  

ABSTRACT Mitogen-activated protein kinase 6/extracellular signal-regulated kinase 3 (MAPK6/ERK3) is an atypical member of the MAPKs. An essential role has been suggested by the perinatal lethal phenotype of ERK3 knockout mice carrying a lacZ insertion in exon 2 due to pulmonary dysfunction and by defects in function, activation, and positive selection of T cells. To study the role of ERK3 in vivo, we generated mice carrying a conditional Erk3 allele with exon 3 flanked by loxP sites. Loss of ERK3 protein was validated after deletion of Erk3 in the female germ line using zona pellucida 3 (Zp3)-cre and a clear reduction of the protein kinase MK5 is detected, providing the first evidence for the existence of the ERK3/MK5 signaling complex in vivo. In contrast to the previously reported Erk3 knockout phenotype, these mice are viable and fertile and do not display pulmonary hypoplasia, acute respiratory failure, abnormal T-cell development, reduction of thymocyte numbers, or altered T-cell selection. Hence, ERK3 is dispensable for pulmonary and T-cell functions. The perinatal lethality and lung and T-cell defects of the previous ERK3 knockout mice are likely due to ERK3-unrelated effects of the inserted lacZ-neomycin resistance cassette. The knockout mouse of the closely related atypical MAPK ERK4/MAPK4 is also normal, suggesting redundant functions of both protein kinases.


Sign in / Sign up

Export Citation Format

Share Document