Molecular profiling of soft tissue sarcomas using next-generation sequencing: a pilot study toward precision therapeutics

2014 ◽  
Vol 45 (8) ◽  
pp. 1563-1571 ◽  
Author(s):  
George Jour ◽  
John D. Scarborough ◽  
Robin L. Jones ◽  
Elizabeth Loggers ◽  
Seth M. Pollack ◽  
...  
2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e22552-e22552
Author(s):  
Mia C. Weiss ◽  
Alan Blank ◽  
Steven Gitelis ◽  
Mary J. Fidler ◽  
Marta Batus

e22552 Background: The overall survival for metastatic sarcoma has remained at only 18-20%. In the era of next generation sequencing (NGS), much research is ongoing on identifying optimal treatments. The MULTISARC trial aims to determine if NGS can lead to improved overall survival by randomizing patients with metastatic STS to receive NGS (followed by possible NGS-guided therapy) or not. We present our center’s experience with NGS in sarcomas patients. Methods: Patients with soft tissue and bone sarcomas at Rush that had the Foundation Medicine assay sent on tumor samples between August 2017 and August 2018 were analyzed retrospectively. The impact of NGS on clinical decision making was determined based on patients being prescribed off-label FDA-approved therapy targeting identified mutation. Results: Thirty-four patients with bone/soft tissue sarcomas that had NGS sent on specimens were identified. Median age at diagnosis: 43 (18-78 years); 18 males, 16 females. Histologic subtypes: synovial sarcoma, myxofibrosarcoma, leiomyosarcoma, chondrosarcoma, sclerosing epitheloid fibrosarcoma, PEcoma, pleomorphic undifferentiated sarcoma, MPNST, liposarcoma- well and de-differentiated, angiosarcoma, osteosarcoma. 16/34 patients had targetable mutations with approved therapies in tumor types other than sarcoma. Four of these patients had therapy changed based on NGS results, 1 patient with metastatic chondrosarcoma (PTEN mutation, everolimus added), 1 patient with metastatic liposarcoma (CDK4 mutation, palbociclib added), 1 patient with metastatic osteosarcoma (CCD1/CDK4 and a PDGFRA mutation for which palbociclib followed by imatinib was added), and 1 patient with metastatic pleomorphic undifferentiated sarcoma (CDK4 mutation, palbociclib added). Targetable mutations for which clinical trials are available were identified in 25/34 (73%) of the cases. Conclusions: NGS was readily able to identify actionable mutations in close to 50% of patients with clinical trial opportunities in close to 75%. Four patients had therapy changed as a result of NGS testing. Although our study size is small, our data show potential for the use of genomic profiling to identify actionable targets, tailor therapy, and hopefully improve outcomes. [Table: see text]


2020 ◽  
pp. 107815522093884
Author(s):  
Xue Na Goh ◽  
Michaela Su-Fern Seng ◽  
Amos Hong Pheng Loh ◽  
Achint Gupta ◽  
Kenneth Tou En Chang ◽  
...  

Introduction Neurotrophic receptor tyrosine kinase fusions cause overexpression or activation of kinase and are believed to confer oncogenic potential in some non-rhabdomyosarcoma soft tissue sarcomas. TRK inhibitors have recently been shown to induce responses in these tumours though current experience with these agents is still limited. Case report We report a case of an adolescent with treatment-refractory non-rhabdomyosarcoma soft tissue sarcomas, carrying a novel DCTN1–NTRK1 gene fusion whose progressive disease was treated with multi-kinase and TRK inhibitors. Management and outcome: Our patient was started on pan-TRK inhibitor larotrectinib, as his disease progressed after chemotherapy, radiation therapy and surgery, based on next-generation sequencing test showing DCTN1–NTRK1 gene fusion. He responded quickly to larotrectinib with the improvement of symptoms and reduction of masses. However, this response was short-lived due to the development of acquired solvent front resistance mutation. This patient did not respond to next-generation TRK inhibitor selitrectinib and eventually succumbed to his disease. Discussion The initial rapid and drastic response of our patient to larotrectinib was not sustained due to the development of acquired resistance. This case emphasizes the need for upfront and periodic next-generation sequencing testing to guide treatment of patients with refractory non-rhabdomyosarcoma soft tissue sarcomas.


Mediastinum ◽  
2021 ◽  
Vol 5 ◽  
pp. AB006-AB006
Author(s):  
Adam Szpechcinski ◽  
Malgorzata Szolkowska ◽  
Sebastian Winiarski ◽  
Urszula Lechowicz ◽  
Piotr Wisniewski ◽  
...  

2019 ◽  
pp. 1-16 ◽  
Author(s):  
Roberto Carmagnani Pestana ◽  
Roman Groisberg ◽  
Jason Roszik ◽  
Vivek Subbiah

Sarcomas are a heterogeneous group of rare malignancies that exhibit remarkable heterogeneity, with more than 50 subtypes recognized. Advances in next-generation sequencing technology have resulted in the discovery of genetic events in these mesenchymal tumors, which in addition to enhancing understanding of the biology, have opened up avenues for molecularly targeted therapy and immunotherapy. This review focuses on how incorporation of next-generation sequencing has affected drug development in sarcomas and strategies for optimizing precision oncology for these rare cancers. In a significant percentage of soft tissue sarcomas, which represent up to 40% of all sarcomas, specific driver molecular abnormalities have been identified. The challenge to evaluate these mutations across rare cancer subtypes requires the careful characterization of these genetic alterations to further define compelling drivers with therapeutic implications. Novel models of clinical trial design also are needed. This shift would entail sustained efforts by the sarcoma community to move from one-size-fits-all trials, in which all sarcomas are treated similarly, to divide-and-conquer subtype-specific strategies.


Sign in / Sign up

Export Citation Format

Share Document