chromosome 1p
Recently Published Documents


TOTAL DOCUMENTS

210
(FIVE YEARS 33)

H-INDEX

38
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Guanzhang Li ◽  
Ruoyu Huang ◽  
Wenhua Fan ◽  
Di Wang ◽  
Fan Wu ◽  
...  

Gliomas with chromosome 1p/19q codeletion were considered a specific tumor entity. This study was designed to reveal the biological function alterations tightly associated with 1p/19q codeletion in gliomas. Clinicopathological and RNA sequencing data from glioma patients were obtained from The Cancer Genome Atlas and Chinese Glioma Genome Atlas databases. Gene set variation analysis was performed to explore the differences in biological functions between glioma subgroups stratified by 1p/19q codeletion status. The abundance of immune cells in each sample was detected using the CIBERSORT analytical tool. Single-cell sequencing data from public databases were analyzed using the t-distributed stochastic neighbor embedding (t-SNE) algorithm, and the findings were verified by in vitro and in vivo experiments and patient samples.We found that the activation of immune and inflammatory responses was tightly associated with 1p/19q codeletion in gliomas. As the most important transcriptional regulator of Galectin-9 in gliomas, the expression level of CCAAT enhancer-binding protein alpha in samples with 1p/19q codeletion was significantly decreased, which led to the downregulation of the immune checkpoints Galectin-9 and TIM-3. These results were validated in three independent datasets. The t-SNE analysis showed that the loss of chromosome 19q was the main reason for the promotion of the antitumor immune response. IHC protein staining, in vitro and in vivo experiments verified the results of bioinformatics analysis. In gliomas, 1p/19q codeletion can promote the antitumor immune response by downregulating the expression levels of the immune checkpoint TIM-3 and its ligand Galectin-9.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5897
Author(s):  
Jikui Guan ◽  
Bengt Hallberg ◽  
Ruth H. Palmer

Neuroblastoma is the most common extracranial solid pediatric tumor, with around 15% childhood cancer-related mortality. High-risk neuroblastomas exhibit a range of genetic, morphological, and clinical heterogeneities, which add complexity to diagnosis and treatment with existing modalities. Identification of novel therapies is a high priority in high-risk neuroblastoma, and the combination of genetic analysis with increased mechanistic understanding—including identification of key signaling and developmental events—provides optimism for the future. This focused review highlights several recent findings concerning chromosomes 1p, 2p, and 11q, which link genetic aberrations with aberrant molecular signaling output. These novel molecular insights contribute important knowledge towards more effective treatment strategies for neuroblastoma.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi31-vi31
Author(s):  
Jong-Whi Park ◽  
Felix Sahm ◽  
Bianca Steffl ◽  
Isabel Arrillaga-Romany ◽  
Daniel Cahill ◽  
...  

Abstract BACKGROUND Decitabine (DAC)-incorporated DNA binds DNMT1 enzyme and subsequently triggers DNMT1 degradation. Previously, we showed that DAC can mediate the anti-tumor effect in a preclinical model of IDH-mutant gliomas. Here, we further investigate molecular determinants of response to DAC in gliomas. METHODS DAC response was assessed by soft agar anchorage independent growth assays and cell proliferation measurements. Patient-derived IDH-mutant chromosome 1p/19q codeleted (codel) and non-codel glioma lines upon vehicle and DAC treatment were used for RNA sequencing and Gene Set Enrichment Analysis (GSEA). RESULTS We found that DAC treatment is effective in high TERT-expressing gliomas including IDH-mutant and IDH-wildtype glioma lines. In contrast, pharmacological inhibition of TERT reduces DAC response in glioma lines. Interestingly, transcriptomic profiling showed that DAC reduces the expression of TERT, along with increased CDKN1A/p21 expression. We experimentally validated that TERT expression depends on CDKN1A/p21. Furthermore, p53 is required for DAC-mediated CDKN1A/p21 induction. Importantly, DAC-mediated proliferation defects in TERT-proficient glioma cells are abolished by DNMT1 knockdown, indicative of an expected DAC mechanism. CONCLUSIONS DAC could elicit the pronounced anti-tumor response in IDH-mutant codel oligodendroglioma and IDH-wildtype glioblastoma with TERT activating mutations.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5398
Author(s):  
Quang-Hien Kha ◽  
Viet-Huan Le ◽  
Truong Nguyen Khanh Hung ◽  
Nguyen Quoc Khanh Le

The prognosis and treatment plans for patients diagnosed with low-grade gliomas (LGGs) may significantly be improved if there is evidence of chromosome 1p/19q co-deletion mutation. Many studies proved that the codeletion status of 1p/19q enhances the sensitivity of the tumor to different types of therapeutics. However, the current clinical gold standard of detecting this chromosomal mutation remains invasive and poses implicit risks to patients. Radiomics features derived from medical images have been used as a new approach for non-invasive diagnosis and clinical decisions. This study proposed an eXtreme Gradient Boosting (XGBoost)-based model to predict the 1p/19q codeletion status in a binary classification task. We trained our model on the public database extracted from The Cancer Imaging Archive (TCIA), including 159 LGG patients with 1p/19q co-deletion mutation status. The XGBoost was the baseline algorithm, and we combined the SHapley Additive exPlanations (SHAP) analysis to select the seven most optimal radiomics features to build the final predictive model. Our final model achieved an accuracy of 87% and 82.8% on the training set and external test set, respectively. With seven wavelet radiomics features, our XGBoost-based model can identify the 1p/19q codeletion status in LGG-diagnosed patients for better management and address the drawbacks of invasive gold-standard tests in clinical practice.


2021 ◽  
Vol 15 ◽  
Author(s):  
Lei Lv ◽  
Yuliu Zhang ◽  
Yujia Zhao ◽  
Qinqin Wei ◽  
Ye Zhao ◽  
...  

Background: Chromosome 1p/19q codeletion is one of the most important genetic alterations for low grade gliomas (LGGs), and patients with 1p/19q codeletion have significantly prolonged survival compared to those without the codeletion. And the tumor immune microenvironment also plays a vital role in the tumor progression and prognosis. However, the effect of 1p/19q codeletion on the tumor immune microenvironment in LGGs is unclear.Methods: Immune cell infiltration of 281 LGGs from The Cancer Genome Atlas (TCGA) and 543 LGGs from the Chinese Glioma Genome Atlas (CGGA) were analyzed for immune cell infiltration through three bioinformatics tools: ESTIMATE algorithm, TIMER, and xCell. The infiltrating level of immune cells and expression of immune checkpoint genes were compared between different groups classified by 1p/19q codeletion and IDH (isocitrate dehydrogenase) mutation status. The differential biological processes and signaling pathways were evaluated through Gene Set Enrichment Analysis (GSEA). Correlations were analyzed using Spearman correlation.Results: 1p/19q codeletion was associated with immune-related biological processes in LGGs. The infiltrating level of multiple kinds of immune cells and expression of immune checkpoint genes were significantly lower in 1p/19q codeletion LGGs compared to 1p/19q non-codeletion cohorts. There are 127 immune-related genes on chromosome 1p or 19q, such as TGFB1, JAK1, and CSF1. The mRNA expression of these genes was positively correlated with their DNA copy number. These genes are distributed in multiple immune categories, such as chemokines/cytokines, TGF-β family members, and TNF family members, regulating immune cell infiltration and expression of the immune checkpoint genes in tumors.Conclusion: Our results indicated that 1p/19q codeletion status is closely associated with the immunosuppressive microenvironment in LGGs. LGGs with 1p/19q codeletion display less immune cell infiltration and lower expression of immune checkpoint genes than 1p/19q non-codeletion cases. Mechanistically, this may be, at least in part, due to the deletion of copy number of immune-related genes in LGGs with 1p/19q codeletion. Our findings may be relevant to investigate immune evasion in LGGs and contribute to the design of immunotherapeutic strategies for patients with LGGs.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zaoqu Liu ◽  
Taoyuan Lu ◽  
Libo Wang ◽  
Long Liu ◽  
Lifeng Li ◽  
...  

Background: Glioma is the most common malignant brain tumor with complex carcinogenic process and poor prognosis. The current molecular classification cannot fully elucidate the molecular diversity of glioma.Methods: Using broad public datasets, we performed cluster analysis based on the mutational signatures and further investigated the multidimensional heterogeneity of the novel glioma molecular subtypes. The clinical significance and immune landscape of four clusters also investigated. The nomogram was developed using the mutational clusters and clinical characteristics.Results: Four heterogenous clusters were identified, termed C1, C2, C3, and C4, respectively. These clusters presented distinct molecular features: C1 was characterized by signature 1, PTEN mutation, chromosome seven amplification and chromosome 10 deletion; C2 was characterized by signature 8 and FLG mutation; C3 was characterized by signature 3 and 13, ATRX and TP53 mutations, and 11p15.1, 11p15.5, and 13q14.2 deletions; and C4 was characterized by signature 16, IDH1 mutation and chromosome 1p and 19q deletions. These clusters also varied in biological functions and immune status. We underlined the potential immune escape mechanisms: abundant stromal and immunosuppressive cells infiltration and immune checkpoints (ICPs) blockade in C1; lack of immune cells, low immunogenicity and antigen presentation defect in C2 and C4; and ICPs blockade in C3. Moreover, C4 possessed a better prognosis, and C1 and C3 were more likely to benefit from immunotherapy. A nomogram with excellent performance was also developed for assessing the prognosis of patients with glioma.Conclusion: Our results can enhance the mastery of molecular features and facilitate the precise treatment and clinical management of glioma.


2021 ◽  
Vol 3 (Supplement_2) ◽  
pp. ii3-ii3
Author(s):  
James Bayley ◽  
Caroline Hadley ◽  
Arif Harmanci ◽  
Akdes Harmanci ◽  
Tiemo Klisch ◽  
...  

Abstract Next-generation sequencing has deepened our understanding of meningiomas, particularly those that behave aggressively. Classifications using either DNA methylation profiling or RNA-sequencing predict tumor behavior more reliably than WHO grade, and segregate common meningioma features similarly, implying possible overlap between classifications. In this study, we performed DNA methylation profiling, RNA-sequencing, and whole-exome sequencing on 110 primary meningiomas (90 WHO I, 20 WHO II). Unsupervised non-negative matrix factorization demonstrated three epigenetic types which were highly concordant with our published transcriptional types (87.3% concordance). Two additional classifications (one using 1p/22 loss, the other merlin expression/chromosomal instability) were also highly concordant and an overall meningioma group (MenG) classification was assigned integrating all four together. MenG A and B rarely recur, while MenG C behave aggressively (median recurrence free survival (RFS) of 3.1 years), even after gross total resection (median RFS 4.2 years). MenG A tumors retain Merlin expression (no chromosome loss or NF2 mutation) and harbor mutations in TRAF7, AKT1, or KLF4. Both MenG B and C are merlin-deficient, but MenG B demonstrate low rates of CNV and MenG C high rates of CNV, particularly loss of chromosome 1p. Using partial least squares regression (PLS), we explored how gene expression correlated with promoter methylation and CNV, thereby classifying genes which correlated closely as ‘methylation-driven’ or ‘CNV-driven’. Overall, there were more methylation-driven (5.7%) than CNV-driven (2.9%) genes. Differentially expressed genes (DEGs) were enriched for both methylation- and CNV-driven genes at similar proportions (10.6% and 5.8%), but DEGs unique to MenG C were significantly enriched for CNV-driven (23.7%), but not methylation-driven (4.7%) genes, primarily due many MenG C DEGs on chromosome 1p. Overall, this work suggests three underlying meningioma groups which are identifiable through methylation, transcriptional, or genetic/cytogenetic profiling and warrants exploration of the role of chromosome 1p in group that behaves aggressively.


2021 ◽  
Author(s):  
Zhiying Lin ◽  
Runwei Yang ◽  
Haojie Zheng ◽  
Zhiyong Li ◽  
Guozhong Yi ◽  
...  

Abstract Background: Pleomorphic xanthoastrocytoma (PXA), anaplastic pleomorphic xanthoastrocytoma (A-PXA), and epithelioid glioblastoma (E-GBM) show overlapping features. However, little is known about their clinical characteristics, molecular features and relationship with progression. Methods: Fourteen patients diagnosed at Nanfang Hospital from 2016 to 2019 were enrolled, including eleven PXA patients, two A-PXA patients, and one E-GBM patient. All tumour tissue samples of the fourteen patients were examined by immunohistochemical staining (MGMT, VEGF, BRAF-V600E, etc.). The recurrent tumour tissue of the patient with E-GBM arising from A-PXA was screened to detect 11 glioma markers (MGMT, BRAF-V600E, etc.) and chromosome 1p/19q by next-generation sequencing (NGS).Results: The mean age of 13 patients with PXA or A-PXA was 25.4 years; twelve of these patients had tumours at supratentorial regions. VEGF positivity was detected in the tumour samples of 13 patients, MGMT positivity in 10 patients, and BRAF-V600E positivity in 7 patients. For the tumour sample of the E-GBM patient who survived for up to 10 years after the fourth resection, BRAF V600E was wild type in the sample obtained from the first surgery, while it was mutant in the second, third, and fourth surgeries. In contrast, the promoter status of MGMT in the four surgeries was unmethylated. The NGS results showed that the mutation frequencies of BRAF V600E in the second, third and fourth surgeries were 14.06%, 9.13% and 48.29%, respectively.Conclusions: Collectively, the results suggest that patients with A-PXA may relapse multiple times and eventually progress to E-GBM with the BRAF-V600E mutation.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zehao Cai ◽  
Chunna Yu ◽  
Shenglan Li ◽  
Can Wang ◽  
Yaqiong Fan ◽  
...  

PurposeGlioma is a classical type of primary brain tumors that is most common seen in adults, and its high heterogeneity used to be a reference standard for subgroup classification. Glioma has been diagnosed based on histopathology, grade, and molecular markers including IDH mutation, chromosome 1p/19q loss, and H3K27M mutation. This subgroup classification cannot fully meet the current needs of clinicians and researchers. We, therefore, present a new subgroup classification for glioma based on the expression levels of Gβ and Gγ genes to complement studies on glioma and Gβγ subunits, and to support clinicians to assess a patient’s tumor status.MethodsGlioma samples retrieved from the CGGA database and the TCGA database. We clustered the gliomas into different groups by using expression values of Gβ and Gγ genes extracted from RNA sequencing data. The Kaplan–Meier method with a two-sided log-rank test was adopted to compare the OS of the patients between GNB2 group and non-GNB2 group. Univariate Cox regression analysis was referred to in order to investigate the prognostic role of each Gβ and Gγ genes. KEGG and ssGSEA analysis were applied to identify highly activated pathways. The “estimate” package, “GSVA” package, and the online analytical tools CIBERSORTx were employed to evaluate immune cell infiltration in glioma samples.ResultsThree subgroups were identified. Each subgroup had its own specific pathway activation pattern and other biological characteristics. High M2 cell infiltration was observed in the GNB2 subgroup. Different subgroups displayed different sensitivities to chemotherapeutics. GNB2 subgroup predicted poor survival in patients with gliomas, especially in patients with LGG with mutation IDH and non-codeleted 1p19q.ConclusionThe subgroup classification we proposed has great application value. It can be used to select chemotherapeutic drugs and the prognosis of patients with target gliomas. The unique relationships between subgroups and tumor-related pathways are worthy of further investigation to identify therapeutic Gβγ heterodimer targets.


Sign in / Sign up

Export Citation Format

Share Document