scholarly journals Identification of immature stages of phlebotomine sand flies using MALDI-TOF MS and mapping of mass spectra during sand fly life cycle

2018 ◽  
Vol 93 ◽  
pp. 47-56 ◽  
Author(s):  
Petr Halada ◽  
Kristyna Hlavackova ◽  
Vit Dvorak ◽  
Petr Volf
Pathogens ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1032
Author(s):  
Edwin Kniha ◽  
Vít Dvořák ◽  
Petr Halada ◽  
Markus Milchram ◽  
Adelheid G. Obwaller ◽  
...  

Sand flies (Diptera: Psychodidae: Phlebotominae) are blood-feeding insects that transmit the protozoan parasites Leishmania spp. and various arthropod-borne (arbo) viruses. While in Mediterranean parts of Europe the sand fly fauna is diverse, in Central European countries including Austria mainly Phlebotomus mascittii is found, an assumed but unproven vector of Leishmania infantum. To update the currently understudied sand fly distribution in Austria, a sand fly survey was performed and other entomological catches were screened for sand flies. Seven new trapping locations of Ph. mascittii are reported including the first record in Vienna, representing also one of the first findings of this species in a city. Morphological identification, supported by fluorescence microscopy, was confirmed by two molecular approaches, including sequencing and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) protein profiling. Sand fly occurrence and activity were evaluated based on surveyed locations, habitat requirements and climatic parameters. Moreover, a first comparison of European Ph. mascittii populations was made by two marker genes, cytochrome c oxidase subunit 1 (COI), and cytochrome b (cytb), as well as MALDI-TOF mass spectra. Our study provides new important records of Ph. mascittii in Austria and valuable data for prospective entomological surveys. MALDI-TOF MS protein profiling was shown to be a reliable tool for differentiation between sand fly species. Rising temperatures and globalization demand for regular entomological surveys to monitor changes in species distribution and composition. This is also important with respect to the possible vector competence of Ph. mascittii.


2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Alexander Mathis ◽  
Jérôme Depaquit ◽  
Vit Dvořák ◽  
Holly Tuten ◽  
Anne-Laure Bañuls ◽  
...  

2020 ◽  
Vol 6 (2) ◽  
pp. 72 ◽  
Author(s):  
Andrés Ceballos-Garzon ◽  
Daniela Amado ◽  
Norida Vélez ◽  
María José Jiménez-A ◽  
Crescencio Rodríguez ◽  
...  

Background: Candida auris is characterized for having a high genetic variability among species. MALDI-TOF MS library contains spectra from only three strains of C. auris, which makes difficult the identification process and gives low scores at the species level. Our aim was to construct and validate an internal library to improve C. auris identification with Colombian clinical strains. Methods: From 30 clinical strains, 770 mass spectra were obtained for the construction of the database. The validation was performed with 300 strains to compare the identification results in the BDAL and C. auris Colombia libraries. Results: Our library allowed a complete, 100% identification of the evaluated strains and a significant improvement in the scores obtained, showing a better performance compared to the Bruker BDAL library. Conclusions: The strengthening of the database is a great opportunity to improve the scoring and C. auris identification. Library data are available via ProteomeXchange with identifier PXD016387.


2007 ◽  
Vol 61 (6) ◽  
pp. 333-341
Author(s):  
Jasna Vukovic ◽  
Slobodan Jovanovic ◽  
Manfred Lechner

In this work, MALDI-TOF mass spectrometry was used for the characterization of aliphatic hyperbranched polyesters (AHBP), synthesized from 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) and di-trimethylolpropane. From the obtained results it was concluded that it was not possible to take complete advantages of MALDI-TOF MS in this particular case, since the AHBP used in this work were polydisperse. The intensity of the signals from the high mass tail of these samples (pseudo generation higher than four) was underestimated and insufficient to distinguish it from the baseline and to use it for the analysis of the spectra. As a consequence of that, lower values of the Mn were obtained. At the same time, Mw were also underestimated, which led to very low values of the polydispersity index. On the other hand, it was possible to obtain molar masses of individual molecules from the MALDI-TOF mass spectra of AHBP and to qualitatively determine the extent of cyclization (side reactions) at each degree of polymerization. Using the adequate set of equations and results obtained from MALDI-TOF mass spectra of AHBP, every signal from the spectra was identified. The obtained results show that formation of poly(bis-MPA), intramolecular esterification and intramolecular etherification occurred as side reactions during the synthesis of these polyesters. The relative amount of the cycles increases with the number of pseudo generation (from the second up to the fifth pseudo generation). It was also observed that the relative proportion of the signals which represent cyclic structures increases with the increasing degree of polymerization. In this work the basic principles of MALDI-TOF MS are also presented, as well as, a review of adequate published articles.


2019 ◽  
Author(s):  
Wenfa Ng

Mass spectrometry-enabled microbial identification has successfully demonstrated the feasibility of using profiled biomolecules for identifying microorganisms based on a chemometric or proteome database search approach. However, mechanisms driving the preferential ionization and detection of particular biomolecules in various types of mass spectrometry remain poorly understood. Specifically, mass spectra obtained from different microbial species remain poorly annotated with respect to the specific types of biomolecules accounting for the peaks. For example, while ribosomal proteins are known to be a significant class of biomolecules that could partially account for the profiled mass peaks in mass spectra of microorganisms, other classes of proteins and biomolecules remain poorly annotated. This raises the important question of how different mass spectrometry approaches ionize different types of biomolecules from a cellular matrix. Specifically, mass spectra of microorganisms reveal that only a couple of mass peaks could capture the phylogeny of a species. However, the proteome of a cell is much larger and more complicated, and yet is not fully profiled by different types of mass spectrometry methods. For example, electrospray ionization mass spectrometry (ESI-MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) could only provide a small snapshot of the entire bacterial proteome. It could be argued that different mass spectrometry methods provide complementary views of a particular proteome. However, the question remains, how do proteins and biomolecules interact with the different sample preparation and mass spectrometry analysis methods for generating an ion cloud for separation in a mass spectrometer? Thus, efforts could be directed towards understanding how different types of proteins could be preferentially ionized by MALDI-TOF MS. Specifically, different reagents could be used to perform chemical pretreatment on the proteome, which would subsequently be analyzed by mass spectrometry. Thus, a correlative map between types of chemical pretreatment used and the corresponding mass spectra could be obtained. Collectively, knowledge gleaned from the research would illuminate the chemical basis by which specific biomolecules are preferentially ionized under particular conditions, which would inform the development of strategies for increasing the subset of biomolecules ionized from a cellular proteome. Such chemical rules would also aid in the interpretation of mass spectra obtained, particularly in understanding the biological context of the experiment. Overall, the key goal of this research is to help answer the question: what is the biological basis and context of the mass spectrum obtained from cells?


2009 ◽  
Vol 64 (3) ◽  
pp. 331-334 ◽  
Author(s):  
Marijana Petković ◽  
Jürgen Schiller ◽  
Matthias Müller ◽  
Rosmarie Süß ◽  
Klaus Arnold ◽  
...  

It is usually accepted that neutral phospholipids (PLs) generate singly positively charged ions, whereas negative PLs are easily detectable in the negative ion mode when analysed by matrix-assisted laser desorption and ionisation time-offlight mass spectrometry (MALDI-TOF MS). In this study, we demonstrate that some caution is required in the interpretation of MALDI-TOF mass spectra of PLs, since also neutral PLs have appeared to be detectable in the negative ion mode as well. Neutral and negatively charged phospholipids can generate adducts with the most commonly used matrix - 2,5-dihydroxybenzoic acid - yielding singly negatively charged ions that are detectable in the spectra. This further contributes to the complexity of the spectra and potentially leads to severe misinterpretation, particularly when unknown mixtures of PLs are analysed by MALDI-TOF MS.


2003 ◽  
Vol 17 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Richard E. Sherburn ◽  
Richard O. Jenkins

Matrix-assisted laser desorption/ionisation time of flight mass spectrometry (MALDI-TOF-MS) was investigated as a method for the rapid identification of yeast cells. Following pretreatment of yeast samples with a cell wall digesting enzyme (lyticase), distinct and reproducible mass spectra over them/zrange 2,000 to 16,000 were obtained by MALDI-TOF-MS. Using an optimised procedure, characteristic mass spectra that distinguished between Candida spp. and between strains of Saccharomyces cerevisiae were produced. The approach offers the potential for rapid differentiation of yeasts in clinical diagnosis and in the fermentation industries.


2021 ◽  
Vol 9 (6) ◽  
pp. 1202
Author(s):  
Viviana Manzulli ◽  
Valeria Rondinone ◽  
Alessandro Buchicchio ◽  
Luigina Serrecchia ◽  
Dora Cipolletta ◽  
...  

Matrix-Assisted Laser Desorption/Ionization Time Of Flight Mass Spectrometry (MALDI-TOF MS) technology is currently increasingly used in diagnostic laboratories as a cost effective, rapid and reliable routine technique for the identification and typing of microorganisms. In this study, we used MALDI-TOF MS to analyze a collection of 160 strains belonging to the Bacillus cereus group (57 B. anthracis, 49 B. cereus, 1 B. mycoides, 18 B. wiedmannii, 27 B. thuringiensis, 7 B. toyonensis and 1 B. weihenstephanensis) and to detect specific biomarkers which would allow an unequivocal identification. The Main Spectra Profiles (MSPs) were added to an in-house reference library, expanding the current commercial library which does not include B. toyonensis and B. wiedmannii mass spectra. The obtained mass spectra were statistically compared by Principal Component Analysis (PCA) that revealed seven different clusters. Moreover, for the identification purpose, were generated dedicate algorithms for a rapid and automatic detection of characteristic ion peaks after the mass spectra acquisition. The presence of specific biomarkers can be used to differentiate strains within the B. cereus group and to make a reliable identification of Bacillus anthracis, etiologic agent of anthrax, which is the most pathogenic and feared bacterium of the group. This could offer a critical time advantage for the diagnosis and for the clinical management of human anthrax even in case of bioterror attacks.


Sign in / Sign up

Export Citation Format

Share Document