maldi tof mass spectra
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 16)

H-INDEX

11
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Caroline Weis ◽  
Aline Cuénod ◽  
Bastian Rieck ◽  
Olivier Dubuis ◽  
Susanne Graf ◽  
...  

2021 ◽  
Author(s):  
Gülen Atiye Öncül ◽  
Ömer Faruk Öztürk ◽  
Mehmet Pişkin

Abstract Novel (E)-4-((5-bromo-2-hydroxy-3-methoxybenzylidene)amino)-N-(pyridin-2-yl)benzenesulfonamide 1, (E)-4-((5-bromo-2-(3,4-dicyanophenoxy)-3-methoxybenzylidene)amino)-N-(pyridin-2-yl)benzene sulfonamide 2 and 2(3),9(10),16(17),23(24)-tetra-[(E)-4-((5-bromo-3-methoxy-2-(λ1-oxidanyl)benzyl idene)amino)-N-(pyridine-2-yl)benzenesulfonamide]phthalocyaninato zinc(II) phthalocyanine 3 were synthesized. Their (1-3) structures were illuminated with spectroscopic methods such as FT-IR, 1H NMR,13C NMR, UV–vis, MALDI-TOF mass spectra and also elemental analysis. The spectroscopic, photophysical and photochemical properties of the zinc(II) phthalocyanine 3 were investigated in dimethyl sulfoxide and its effects on the above mentioned properties were reported as a result of containing new type benzenesulfonamide derivatives as substituents. In addition, its above-mentioned properties were reported by comparing different species with those of their substituted and/or unsubstituted counterparts. The zinc(II) phthalocyanine 3 has photosensitizing abilities suitable and sufficient especially for photocatalytic applications.


2021 ◽  
Vol 12 ◽  
Author(s):  
Eugenio Del Prete ◽  
Angelo Facchiano ◽  
Aldo Profumo ◽  
Claudia Angelini ◽  
Paolo Romano

Mass spectrometry is a widely applied technology with a strong impact in the proteomics field. MALDI-TOF is a combined technology in mass spectrometry with many applications in characterizing biological samples from different sources, such as the identification of cancer biomarkers, the detection of food frauds, the identification of doping substances in athletes’ fluids, and so on. The massive quantity of data, in the form of mass spectra, are often biased and altered by different sources of noise. Therefore, extracting the most relevant features that characterize the samples is often challenging and requires combining several computational methods. Here, we present GeenaR, a novel web tool that provides a complete workflow for pre-processing, analyzing, visualizing, and comparing MALDI-TOF mass spectra. GeenaR is user-friendly, provides many different functionalities for the analysis of the mass spectra, and supports reproducible research since it produces a human-readable report that contains function parameters, results, and the code used for processing the mass spectra. First, we illustrate the features available in GeenaR. Then, we describe its internal structure. Finally, we prove its capabilities in analyzing oncological datasets by presenting two case studies related to ovarian cancer and colorectal cancer. GeenaR is available at http://proteomics.hsanmartino.it/geenar/.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1683
Author(s):  
Marek Šebela ◽  
Martin Raus ◽  
Vladan Ondřej ◽  
Petr Hašler

The aim and novelty of this paper are found in assessing the influence of inhibitors and antibiotics on intact cell MALDI-TOF mass spectra of the cyanobacterium Synechococcus sp. UPOC S4 and to check the impact on reliability of identification. Defining the limits of this method is important for its use in biology and applied science. The compounds included inhibitors of respiration, glycolysis, citrate cycle, and proteosynthesis. They were used at 1–10 μM concentrations and different periods of up to 3 weeks. Cells were also grown without inhibitors in a microgravity because of expected strong effects. Mass spectra were evaluated using controls and interpreted in terms of differential peaks and their assignment to protein sequences by mass. Antibiotics, azide, and bromopyruvate had the greatest impact. The spectral patterns were markedly altered after a prolonged incubation at higher concentrations, which precluded identification in the database of reference spectra. The incubation in microgravity showed a similar effect. These differences were evident in dendrograms constructed from the spectral data. Enzyme inhibitors affected the spectra to a smaller extent. This study shows that only a long-term presence of antibiotics and strong metabolic inhibitors in the medium at 10−5 M concentrations hinders the correct identification of cyanobacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF).


2021 ◽  
Vol 9 (2) ◽  
pp. 416
Author(s):  
Charles Dumolin ◽  
Charlotte Peeters ◽  
Evelien De Canck ◽  
Nico Boon ◽  
Peter Vandamme

Culturomics-based bacterial diversity studies benefit from the implementation of MALDI-TOF MS to remove genomically redundant isolates from isolate collections. We previously introduced SPeDE, a novel tool designed to dereplicate spectral datasets at an infraspecific level into operational isolation units (OIUs) based on unique spectral features. However, biological and technical variation may result in methodology-induced differences in MALDI-TOF mass spectra and hence provoke the detection of genomically redundant OIUs. In the present study, we used three datasets to analyze to which extent hierarchical clustering and network analysis allowed to eliminate redundant OIUs obtained through biological and technical sample variation and to describe the diversity within a set of spectra obtained from 134 unknown soil isolates. Overall, network analysis based on unique spectral features in MALDI-TOF mass spectra enabled a superior selection of genomically diverse OIUs compared to hierarchical clustering analysis and provided a better understanding of the inter-OIU relationships.


Author(s):  
Shan Shan Qi ◽  
Margo Cnockaert ◽  
Aurélien Carlier ◽  
Peter Vandamme

Three rod-shaped, non-spore-forming, yellow or pale-yellow pigmented bacteria with distinct MALDI-TOF mass spectra were isolated from the phyllosphere of Arabidopsis thaliana seedlings. Their 16S rRNA gene sequences demonstrated that these isolates belong to the genus Pedobacter . The nearest phylogenetic neighbours of strain LMG 31462T were Pedobacter steynii DSM 19110T (98.3 % 16S rRNA sequence similarity) and Pedobacter caeni LMG 22862T (98.3 %); the nearest phylogenetic neighbours of strain LMG 31463T were Pedobacter panaciterrae Gsoil 042T (98.3 %) and Pedobacter nutrimenti DSM 27372T (98.1 %); and the nearest phylogenetic neighbours of strain LMG 31464T were Pedobacter boryungensis BR-9T (99.0 %) and Pedobacter daejeonensis THG-DN3.18T (98.7 %). Average nucleotide identity analyses between the whole genome sequences of the three strains and of the type strains of their respective nearest-neighbour taxa yielded values well below the species delineation threshold and thus confirmed that the three strains represented a novel Pedobacter species each. An extensive phenotypic comparison and an analysis of whole-cell fatty acid components yielded distinctive phenotypic characteristics for each of these strains. We therefore propose to classify these isolates as three novel species, for which we propose the names Pedobacter gandavensis with LMG 31462T (=R-74704T=CECT 30149T) as the type strain, Pedobacter foliorum with LMG 31463T (=R-74623T=CECT 30150T) as the type strain and Pedobacter planticolens with LMG 31464T (=R-74626T=CECT 30151T) as the type strain.


Author(s):  
Atena Sadat Sombolestani ◽  
Ilse Cleenwerck ◽  
Margo Cnockaert ◽  
Wim Borremans ◽  
Anneleen D. Wieme ◽  
...  

A phylogenomic analysis based on 107 single-copy core genes revealed that three strains from sugar-rich environments, i.e. LMG 1728T, LMG 1731 and LMG 22058, represented a single, novel Gluconacetobacter lineage with Gluconacetobacter liquefaciens as nearest validly named neighbour. OrthoANIu and digital DNA–DNA hybridization analyses among these strains and Gluconacetobacter type strains confirmed that the three strains represented a novel Gluconacetobacter species. Biochemical characteristics and MALDI-TOF mass spectra allowed differentiation of this novel species from the type strains of G. liquefaciens and other closely related Gluconacetobacter species. We therefore propose to classify strains LMG 1728T, LMG 1731 and LMG 22058 in the novel species Gluconacetobacter dulcium sp. nov., with LMG 1728T (=CECT 30142T) as the type strain.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Sivkheng Kann ◽  
Sena Sao ◽  
Chanleakhena Phoeung ◽  
Youlet By ◽  
Juliet Bryant ◽  
...  

Abstract Background Serotyping of Streptococcus pneumoniae is important for monitoring of vaccine impact. Unfortunately, conventional and molecular serotyping is expensive and technically demanding. This study aimed to determine the ability of matrix-assisted laser desorption-ionisation time-of-flight (MALDI-TOF) mass spectrometry to discriminate between pneumococcal serotypes and genotypes (defined by global pneumococcal sequence cluster, GPSC). In this study, MALDI-TOF mass spectra were generated for a diverse panel of whole genome sequenced pneumococcal isolates using the bioMerieux VITEK MS in clinical diagnostic (IVD) mode. Discriminatory mass peaks were identified and hierarchical clustering was performed to visually assess discriminatory ability. Random forest and classification and regression tree (CART) algorithms were used to formally determine how well serotypes and genotypes were identified by MALDI-TOF mass spectrum. Results One hundred and ninety-nine pneumococci, comprising 16 serotypes and non-typeable isolates from 46 GPSC, were analysed. In the primary experiment, hierarchical clustering revealed poor congruence between MALDI-TOF mass spectrum and serotype. The correct serotype was identified from MALDI-TOF mass spectrum in just 14.6% (random forest) or 35.4% (CART) of 130 isolates. Restricting the dataset to the nine dominant GPSC (61 isolates / 13 serotypes), discriminatory ability improved slightly: the correct serotype was identified in 21.3% (random forest) and 41.0% (CART). Finally, analysis of 69 isolates of three dominant serotype-genotype pairs (6B-GPSC1, 19F-GPSC23, 23F-GPSC624) resulted in the correct serotype identification in 81.1% (random forest) and 94.2% (CART) of isolates. Conclusions This work suggests that MALDI-TOF is not a useful technique for determination of pneumococcal serotype. MALDI-TOF mass spectra appear more associated with isolate genotype, which may still have utility for future pneumococcal surveillance activities.


Sign in / Sign up

Export Citation Format

Share Document