Beyond the eye: Kynurenine pathway impairment causes midgut homeostasis dysfunction and survival and reproductive costs in blood-feeding mosquitoes

Author(s):  
Vanessa Bottino-Rojas ◽  
Igor Ferreira ◽  
Rodrigo D. Nunes ◽  
Xuechun Feng ◽  
Thai Binh Pham ◽  
...  
Author(s):  
H. J. Kirch ◽  
G. Spates ◽  
R. Droleskey ◽  
W.J. Kloft ◽  
J.R. DeLoach

Blood feeding insects have to rely on the protein content of mammalian blood to insure reproduction. A substantial quantity of protein is provided by hemoglobin present in erythrocytes. Access to hemoglobin is accomplished only via erythrocyte lysis. It has been shown that midgut homogenates from the blood feeding stable fly, Stomoxys calcitrans, contain free fatty acids and it was proposed that these detergent-like compounds play a major role as hemolysins in the digestive physiology of this species. More recently sphingomyelinase activity was detected in midgut preparations of this fly, which would provide a potential tool for the enzymatic cleavage of the erythrocyte's membrane sphingomyelin. The action of specific hemolytic factors should affect the erythrocyte's morphology. The shape of bovine erythrocytes undergoing in vitro hemolysis by crude midgut homogenates from the stable fly was examined by scanning and transmission electron microscopy.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 2041-P
Author(s):  
TAKASHI YAMAMOTO ◽  
TAKANARI GOTODA

2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Christopher Everett Warren Clarke

Of all blood feeding invertebrates, few are more notorious than leeches. Throughout their existence as ectoparasites, leeches have evolved to release biological molecules in their saliva that act to counter the responses of the prey’s body to vascular trauma. Inadvertently, these very molecules have been used by humans for centuries for medicinal purposes; however, it is only recently that their cellular action has been elucidated. As a result, these compounds have been isolated and mass produced to treat a wide variety of conditions ranging from heart attack to Alzheimer’s disease and continued work suggests that these isolates will be an important future treatment for metastasis.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3141
Author(s):  
Aurora Laborda-Illanes ◽  
Lidia Sánchez-Alcoholado ◽  
Soukaina Boutriq ◽  
Isaac Plaza-Andrades ◽  
Jesús Peralta-Linero ◽  
...  

In this review we summarize a possible connection between gut microbiota, melatonin production, and breast cancer. An imbalance in gut bacterial population composition (dysbiosis), or changes in the production of melatonin (circadian disruption) alters estrogen levels. On the one hand, this may be due to the bacterial composition of estrobolome, since bacteria with β-glucuronidase activity favour estrogens in a deconjugated state, which may ultimately lead to pathologies, including breast cancer. On the other hand, it has been shown that these changes in intestinal microbiota stimulate the kynurenine pathway, moving tryptophan away from the melatonergic pathway, thereby reducing circulating melatonin levels. Due to the fact that melatonin has antiestrogenic properties, it affects active and inactive estrogen levels. These changes increase the risk of developing breast cancer. Additionally, melatonin stimulates the differentiation of preadipocytes into adipocytes, which have low estrogen levels due to the fact that adipocytes do not express aromatase. Consequently, melatonin also reduces the risk of breast cancer. However, more studies are needed to determine the relationship between microbiota, melatonin, and breast cancer, in addition to clinical trials to confirm the sensitizing effects of melatonin to chemotherapy and radiotherapy, and its ability to ameliorate or prevent the side effects of these therapies.


2021 ◽  
Vol 22 (13) ◽  
pp. 6972
Author(s):  
Ilona Sadok ◽  
Katarzyna Jędruchniewicz ◽  
Karol Rawicz-Pruszyński ◽  
Magdalena Staniszewska

Metabolites and enzymes involved in the kynurenine pathway (KP) are highly promising targets for cancer treatment, including gastrointestinal tract diseases. Thus, accurate quantification of these compounds in body fluids becomes increasingly important. The aim of this study was the development and validation of the UHPLC-ESI-MS/MS methods for targeted quantification of biologically important KP substrates (tryptophan and nicotinamide) and metabolites(kynurenines) in samples of serum and peritoneal fluid from gastric cancer patients. The serum samples were simply pretreated with trichloroacetic acid to precipitate proteins. The peritoneal fluid was purified by solid-phase extraction before analysis. Validation was carried out for both matrices independently. Analysis of the samples from gastric cancer patients showed different accumulations of tryptophan and its metabolites in different biofluids of the same patient. The protocols will be used for the evaluation of tryptophan and kynurenines in blood and peritoneal fluid to determine correlation with the clinicopathological status of gastric cancer or the disease’s prognosis.


Sign in / Sign up

Export Citation Format

Share Document