Bioinspired manganese complex for room-temperature oxidation of primary amines to imines by t-butyl hydroperoxide

2021 ◽  
Vol 519 ◽  
pp. 120282
Author(s):  
Lin Lei ◽  
Yaju Chen ◽  
Zhenfeng Feng ◽  
Chunyan Deng ◽  
Yepeng Xiao
1999 ◽  
Vol 8 (3) ◽  
pp. 241-246
Author(s):  
J. M. Forniés-Marquina ◽  
A. Siblini ◽  
L. Jorat ◽  
G. Noyel

2021 ◽  
Vol 27 (S1) ◽  
pp. 726-728
Author(s):  
G. Tarango-Rivero ◽  
G. Herrera-Perez ◽  
C. Carreño-Gallardo ◽  
C.G. Garay-Reyes ◽  
I. Estrada-Guel ◽  
...  

Author(s):  
Minami Matsumoto ◽  
Ken Kimura ◽  
Natsuko Sugiura

AbstractDuplex stainless steels (DSSs), which consist of ferrite and austenite phases, are widely used owing to their high strength and good corrosion resistance. However, the oxidation behavior of DSSs is extremely complicated because they have dual phases. In this study, changes in the scale and the metal substrate during oxidation were investigated. UNS S32101 (Fe-21.5%Cr–5%Mn–1.5%Ni–0.3%Mo–0.22%N), which is a typical type of DSS, was annealed at 1473 K for up to 36 ks in air. The microstructure of UNS S32101 consisted of austenite/ferrite phases, the ratio of which was 50:50 at room temperature. After oxidation, Cr, Mn-oxide formed predominantly. The metal substrate beneath the scale changed mostly to ferrite. In the same region, depletion of Mn and N concentrations resulted. The decrease in Mn was due to the formation of Cr, Mn-oxide. In addition, it was revealed that N content of the metal substrate decreased due to the formation of N2 gas along with the depletion of Mn. It was assumed that the decrease in Mn and N, which are austenite-stabilized elements, led to an increase in ferrite in the depletion area of Mn and N. From this result, it was expected that the compositional changes in the Mn/N depletion area were caused by the oxidation of steel.


1983 ◽  
Vol 15 (1-4) ◽  
pp. 66-74 ◽  
Author(s):  
P.J. Osborne ◽  
P.J.K. Paterson ◽  
O. Spillecke

2005 ◽  
Vol 140 (4) ◽  
pp. 332-345 ◽  
Author(s):  
Ting Shi ◽  
Xiaofang Wang ◽  
Jun Deng ◽  
Zhenyi Wen

2016 ◽  
Vol 09 (06) ◽  
pp. 1642009 ◽  
Author(s):  
Jing Zhou ◽  
Yong Zhao ◽  
Lifan Qin ◽  
Chen Zeng ◽  
Wei Xiao

Uniform CoSn(OH)6 hollow nanoboxes and the derivative with Pt loading (Pt/CoSn(OH)6) were herein synthesized and characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). SEM and TEM analyses showed that CoSn(OH)6 possessed mesoporous hollow structure and Pt nanoparticles with size of 2–8[Formula: see text]nm were uniformly dispersed on the surface of CoSn(OH)6 nanoboxes. The performances of the catalysts for the formaldehyde (HCHO) removal at room temperature were evaluated. These Pt/CoSn(OH)6 catalysts exhibited a remarkable catalytic activity as well as stability for room-temperature oxidative decomposition of gaseous HCHO, while the corresponding CoSn(OH)6 only showed adsorption. The synergetic effect between the highly dispersed Pt nanoparticles and the CoSn(OH)6 nanoboxes with mesoporous hollow structure, a large surface area and abundant surface hydroxyl groups is considered to be the main reason for the observed high catalytic activity of Pt/CoSn(OH)6.


2011 ◽  
Vol 59 (1) ◽  
pp. 105-109 ◽  
Author(s):  
S-G. Cho ◽  
K-H. Park ◽  
D-H. Han ◽  
Tschang-Uh Nahm

Sign in / Sign up

Export Citation Format

Share Document