scholarly journals Radiative energy balance of Venus: An approach to parameterize thermal cooling and solar heating rates

Icarus ◽  
2017 ◽  
Vol 284 ◽  
pp. 216-232 ◽  
Author(s):  
R. Haus ◽  
D. Kappel ◽  
G. Arnold
1996 ◽  
Vol 10 (10) ◽  
pp. 1359-1367 ◽  
Author(s):  
G. N. FLERCHINGER ◽  
J. M. BAKER ◽  
E. J. A. SPAANS

2018 ◽  
Vol 22 (7) ◽  
pp. 4015-4032 ◽  
Author(s):  
Milad Aminzadeh ◽  
Peter Lehmann ◽  
Dani Or

Abstract. The growing pressure on natural freshwater resources and the projected climate variability are expected to increase the need for water storage during rainy periods. Evaporative losses present a challenge for the efficiency of water storage in reservoirs, especially in arid regions with chronic water shortages. Among the available methods for suppressing evaporative losses, self-assembling floating elements offer a simple and scalable solution, especially for small reservoirs. The use of floating elements has often been empirically based; we thus seek a framework for systematic consideration of floating element properties, local climate and reservoir conditions to better predict evaporative loss, energy balance and heat fluxes from covered water reservoirs. We linked the energy balance of the water column with energy considerations of the floating elements. Results suggest significant suppression of evaporative losses from covered reservoirs in which incoming radiative energy is partitioned to sensible and long wave fluxes that reduce latent heat flux and thus increase the Bowen ratio over covered water reservoirs. Model findings were consistent with laboratory-scale observations using an uncovered and covered small basin. The study offers a physically based framework for testing design scenarios in terms of evaporation suppression efficiency for various climatic conditions; it hence strengthens the science in the basis of this important water resource conservation strategy.


2013 ◽  
Vol 22 (2) ◽  
pp. 157 ◽  
Author(s):  
David Frankman ◽  
Brent W. Webb ◽  
Bret W. Butler ◽  
Daniel Jimenez ◽  
Jason M. Forthofer ◽  
...  

Time-resolved irradiance and convective heating and cooling of fast-response thermopile sensors were measured in 13 natural and prescribed wildland fires under a variety of fuel and ambient conditions. It was shown that a sensor exposed to the fire environment was subject to rapid fluctuations of convective transfer whereas irradiance measured by a windowed sensor was much less variable in time, increasing nearly monotonically with the approach of the flame front and largely declining with its passage. Irradiance beneath two crown fires peaked at 200 and 300 kW m–2, peak irradiance associated with fires in surface fuels reached 100 kW m–2 and the peak for three instances of burning in shrub fuels was 132 kW m–2. The fire radiative energy accounted for 79% of the variance in fuel consumption. Convective heating at the sensor surface varied from 15% to values exceeding the radiative flux. Detailed measurements of convective and radiative heating rates in wildland fires are presented. Results indicate that the relative contribution of each to total energy release is dependent on fuel and environment.


2002 ◽  
Vol 124 (3) ◽  
pp. 580-582 ◽  
Author(s):  
Genong Li and ◽  
Michael F. Modest

An acceleration method is proposed particularly for the P1 equation. The radiative energy balance is used as a constraint to correct iterative solutions. The method not only accelerates convergence but also preserves the radiative energy balance, the latter being of great importance when radiation calculations are coupled with flow calculations. This acceleration method can be applied to other elliptical problems with boundary conditions of the second and/or the third kind.


Icarus ◽  
1990 ◽  
Vol 84 (1) ◽  
pp. 62-82 ◽  
Author(s):  
Rainer Haus ◽  
Hartwin Goering

2016 ◽  
Vol 38 (1) ◽  
pp. 64-88 ◽  
Author(s):  
N Belkacem ◽  
L Loukarfi ◽  
M Missoum ◽  
H Naji ◽  
A Khelil ◽  
...  

Bioclimatic architecture strategies and solar active systems contribute strongly to the reduction of building energy demand and achieving thermal comfort for its occupants over the whole year. This paper deals with the study of the energy performance improvement of a pilot bioclimatic house located in Algiers (Algeria). First, a series of experimental measures are conducted during cold period to show the effect of passive and active solar gains on the improvement of the indoor air temperature of the house. Then, a dynamic model of a solar heating system coupled with a bioclimatic house has been developed using TRNSYS software and validated with experimental data. The validated model has been used to establish the energy balance of the pilot bioclimatic house without solar heating system and to compare them to those of a conventional house. Finally, the improvement of the energy balance of the pilot bioclimatic house has been done by passive and active ways. The passive one includes the increase of south facing windows size and the use of night cooling with the use of shading device in summer. The active one consists of the integration of a solar heating system. Furthermore, an environmental study has been performed. The experimental results show that the energy requirements of a pilot bioclimatic house are very low which is suitable for the use of solar heating system in building. The simulation results show that the application of bioclimatic strategies is a better way to provide thermal comfort in summer and decrease the space heating energy demand of the house with 48.70%. The active solar system will cover 67.74% of the energy demand for heating of the house. These energy savings generate a significant reduction in CO2 emissions. Practical application: This work will enable engineers and designers of modern buildings of buildings in a Mediterranean climate to improve building energy efficiency and reduce CO2 emissions by a conjunction of different passive heating and cooling techniques such as insulation, thermal mass, window shades, night ventilation, and the solar heating system. The paper provides designers an effective strategy in terms of energy savings and indoor thermal comfort while reducing CO2 emissions.


Sign in / Sign up

Export Citation Format

Share Document