A geologic model for lunar ice deposits at mining scales

Icarus ◽  
2020 ◽  
Vol 347 ◽  
pp. 113778 ◽  
Author(s):  
Kevin M. Cannon ◽  
Daniel T. Britt
Keyword(s):  
2021 ◽  
Vol 48 (2) ◽  
Author(s):  
Laura Juliana Rojas Cárdenas ◽  
Indira Molina

An hydrocarbon reservoir was characterized via a detailed geologic model, which allowed estimation of the original oil in place. The study characterizes a hydrocarbon reservoir of two fields of unit C7 of the Carbonera Formation within the Llanos Orientales basin of Colombia. This was done using well logs, the structural surface of the regional datum of the area, segments of the Yuca fault and a local fault of the reservoir, the  permeability equation, and J functions of the reservoir provided by the operating company. With this  information, a two-fault model and a grid with 3D cells was created. Each cell was assigned with a value of facies and petrophysical properties: porosity, permeability, and water saturation, to obtain a 3D model of  facies and petrophysical properties. Subsequently, we used the constructed models and oil-water contacts to  calculate the original oil in place for each field. Field 1 has a volume of six million barrels of oil and field 2 has  9 million barrels. 


2013 ◽  
Vol 119 (8) ◽  
pp. 519-526 ◽  
Author(s):  
Shinji Masumoto ◽  
Kiyoji Shiono ◽  
Tatsuya Nemoto ◽  
Susumu Nonogaki

2017 ◽  
Vol 5 (3) ◽  
pp. T299-T311 ◽  
Author(s):  
Sarah G. R. Devriese ◽  
Kristofer Davis ◽  
Douglas W. Oldenburg

The Tli Kwi Cho (TKC) kimberlite complex contains two pipes, called DO-27 and DO-18, which were discovered during the Canadian diamond exploration rush in the 1990s. The complex has been used as a testbed for ground and airborne geophysics, and an abundance of data currently exist over the area. We have evaluated the historical and geologic background of the complex, the physical properties of interest for kimberlite exploration, and the geophysical surveys. We have carried out 3D inversion and joint interpretation of the potential field data. The magnetic data indicate high susceptibility at DO-18, and the magnetic inversion maps the horizontal extent of the pipe. DO-27 is more complicated. The northern part is highly magnetic and is contaminated with remanent magnetization; other parts of DO-27 have a low susceptibility. Low densities, obtained from the gravity and gravity gradiometry data, map the horizontal extents of DO-27 and DO-18. We combine the 3D density contrast and susceptibility models into a single geologic model that identifies three distinct kimberlite rock units that agree with drilling data. In further research, our density and magnetic susceptibility models are combined with information from electromagnetic data to provide a multigeophysical interpretation of the TKC kimberlite complex.


2021 ◽  
Author(s):  
Phathompat Boonyasaknanon ◽  
Raymond Pols ◽  
Katja Schulze ◽  
Robert Rundle

Abstract An augmented reality (AR) system is presented which enhances the real-time collaboration of domain experts involved in the geologic modeling of complex reservoirs. An evaluation of traditional techniques is compared with this new approach. The objective of geologic modeling is to describe the subsurface as accurately and in as much detail as possible given the available data. This is necessarily an iterative process since as new wells are drilled more data becomes available which either validates current assumptions or forces a re-evaluation of the model. As the speed of reservoir development increases there is a need for expeditious updates of the subsurface model as working with an outdated model can lead to costly mistakes. Common practice is for a geologist to maintain the geologic model while working closely with other domain experts who are frequently not co-located with the geologist. Time-critical analysis can be hampered by the fact that reservoirs, which are inherently 3D objects, are traditionally viewed with 2D screens. The system presented here allows the geologic model to be rendered as a hologram in multiple locations to allow domain experts to collaborate and analyze the reservoir in real-time. Collaboration on 3D models has not changed significantly in a generation. For co-located personnel the approach is to gather around a 2D screen. For remote personnel the approach has been sharing a model through a 2D screen along with video chat. These approaches are not optimal for many reasons. Over the years various attempts have been tried to enhance the collaboration experience and have all fallen short. In particular virtual reality (VR) has been seen as a solution to this problem. However, we have found that augmented reality (AR) is a much better solution for many subtle reasons which are explored in the paper. AR has already acquired an impressive track record in various industries. AR will have applications in nearly all industries. For various historical reasons, the uptake for AR is much faster in some industries than others. It is too early to tell whether the use of augmented reality in geological applications will be transformative, however the results of this initial work are promising.


2016 ◽  
Vol 4 (1) ◽  
pp. SB37-SB50 ◽  
Author(s):  
Marcella M. M. Cortez ◽  
Marco A. Cetale Santos

During the past decade, a significant exploration effort into deeper water and deeper targets in offshore areas brought more knowledge about the distribution of igneous rocks in the sedimentary basins along many continental margins. Nonhomogeneous illumination effects may occur below shallow, high-impedance igneous rock bodies. The seismic processing, depth imaging, interpretation, and attribute analysis require a special attention when these magmatic bodies affect the illumination of deeper targets. Usually, those structures are not considered in illumination studies, and the salt diapirs govern the analysis. In this work, seismic attributes are quite relevant to constrain the geologic model used to simulate the amplitude maps of the deeper target and to quantify the shadow effects observed on it. These amplitude shadows may either create (false) or hide (true) attribute anomalies. We have modeled a Tertiary volcano-sedimentary succession (VSS) mapped in the northeastern Santos Basin, offshore Brazil, to simulate the effect in the amplitude response of deeper targets. There were multiple magmatic events through the Santos Basin Cretaceous-Tertiary sedimentary succession, intrusive and extrusive. The igneous extrusive rocks intercalated with sediments forming VSS marked by low- and high-amplitude responses with tough lateral discontinuity. The amplitude found well-preserved architectural elements interpreted as lava flows and volcanoes, contrasting with layered sediments. We have defined geobodies constrained by relative impedance and 3D edge detection to build the 3D geologic model of the igneous successions used for seismic simulation. From the geobodies, we modeled two VSS to run the P-waves ray-tracing propagation to simulate the migrated amplitude map of the deeper Lower Albian sequence top. We computed the P-velocity and the density from well logs, and the seismic acquisition geometry was similar to the original. Comparison between real and simulated amplitudes showed the impact of shadow zones caused by shallower igneous bodies.


Sign in / Sign up

Export Citation Format

Share Document