scholarly journals An improved multiple-frequency method for measuring in situ target strengths

2005 ◽  
Vol 62 (8) ◽  
pp. 1636-1646 ◽  
Author(s):  
Stéphane G. Conti ◽  
David A. Demer ◽  
Michael A. Soule ◽  
Jean H.E. Conti

Abstract Refinements have been made to the multiple-frequency method for rejecting overlapping echoes when making target-strength measurements with split-beam echosounders described in Demer et al. (1999). The technique requires that echoes, simultaneously detected with two or more adjacent split-beam transducers of different frequencies, pass multiple-target rejection algorithms at each frequency, and characterize virtually identical three-dimensional target coordinates. To translate the coordinates into a common reference system for comparison, the previous method only considered relative transducer positions and assumed that the beam axes of the transducers were parallel. The method was improved by first, optimizing the accuracy and precision of the range and angular measurements of the individual frequency detections; and second, precisely determining acoustically the relative positions and angular orientations of the transducers, thus completely describing the reference-system transformation(s). Algorithms are presented for accurately and precisely estimating the transformation parameters, and efficiently rejecting multiple targets while retaining measurements of most single targets. These improvements are demonstrated through simulations, controlled test-tank experiments, and shipboard measurements using 38- and 120-kHz split-beam transducers. The results indicate that the improved multiple-frequency TS method can reject more than 97% of multiple targets, while allowing 99% of the resolvable single targets to be measured.

2020 ◽  
Author(s):  
Piotr Majka ◽  
Sylwia Bednarek ◽  
Jonathan M. Chan ◽  
Natalia Jermakow ◽  
Cirong Liu ◽  
...  

AbstractThe rapid adoption of marmosets in neuroscience has created a demand for three dimensional (3D) atlases of the brain of this species to facilitate data integration in a common reference space. We report on a new open access template of the marmoset cortex (the Nencki–Monash, or NM template), representing a morphological average of 20 brains of young adult individuals, obtained by 3D reconstructions generated from Nissl-stained serial sections. The method used to generate the template takes into account morphological features of the individual brains, as well as the borders of clearly defined cytoarchitectural areas. This has resulted in a resource which allows direct estimates of the most likely coordinates of each cortical area, as well as quantification of the margins of error involved in assigning voxels to areas, and preserves quantitative information about the laminar structure of the cortex. We provide spatial transformations between the NM and other available marmoset brain templates, thus enabling integration with magnetic resonance imaging (MRI) and tracer-based connectivity data. The NM template combines some of the main advantages of histology-based atlases (e.g. information about the cytoarchitectural structure) with features more commonly associated with MRI-based templates (isotropic nature of the dataset, and probabilistic analyses). The underlying workflow may be found useful in the future development of brain atlases that incorporate information about the variability of areas in species for which it may be impractical to ensure homogeneity of the sample in terms of age, sex and genetic background.Graphical abstractHighlightsA 3D template of the marmoset cortex representing the average of 20 individuals.The template is based on Nissl stain and preserves information about cortical layers.Probabilistic mapping of areas, cortical thickness, and layer intensity profiles.Includes spatial transformations to other marmoset brain atlases.AbbreviationsFor a list of areas and their abbreviations see Table S2.


Author(s):  
B. Carragher ◽  
M. Whittaker

Techniques for three-dimensional reconstruction of macromolecular complexes from electron micrographs have been successfully used for many years. These include methods which take advantage of the natural symmetry properties of the structure (for example helical or icosahedral) as well as those that use single axis or other tilting geometries to reconstruct from a set of projection images. These techniques have traditionally relied on a very experienced operator to manually perform the often numerous and time consuming steps required to obtain the final reconstruction. While the guidance and oversight of an experienced and critical operator will always be an essential component of these techniques, recent advances in computer technology, microprocessor controlled microscopes and the availability of high quality CCD cameras have provided the means to automate many of the individual steps.During the acquisition of data automation provides benefits not only in terms of convenience and time saving but also in circumstances where manual procedures limit the quality of the final reconstruction.


2010 ◽  
Vol 3 (2) ◽  
pp. 156-180 ◽  
Author(s):  
Renáta Gregová ◽  
Lívia Körtvélyessy ◽  
Július Zimmermann

Universals Archive (Universal #1926) indicates a universal tendency for sound symbolism in reference to the expression of diminutives and augmentatives. The research ( Štekauer et al. 2009 ) carried out on European languages has not proved the tendency at all. Therefore, our research was extended to cover three language families – Indo-European, Niger-Congo and Austronesian. A three-step analysis examining different aspects of phonetic symbolism was carried out on a core vocabulary of 35 lexical items. A research sample was selected out of 60 languages. The evaluative markers were analyzed according to both phonetic classification of vowels and consonants and Ultan's and Niewenhuis' conclusions on the dominance of palatal and post-alveolar consonants in diminutive markers. Finally, the data obtained in our sample languages was evaluated by means of a three-dimensional model illustrating the place of articulation of the individual segments.


2020 ◽  
Vol 11 (3) ◽  
pp. 112-152
Author(s):  
Busiso Helard Moyo ◽  
Anne Marie Thompson Thow

Despite South Africa’s celebrated constitutional commitments that have expanded and deepened South Africa’s commitment to realise socio-economic rights, limited progress in implementing right to food policies stands to compromise the country’s developmental path. If not a deliberate policy choice, the persistence of hunger, food insecurity and malnutrition in all its forms is a deep policy failure.  Food system transformation in South Africa requires addressing wider issues of who controls the food supply, thus influencing the food chain and the food choices of the individual and communities. This paper examines three global rights-based paradigms – ‘food justice’, ‘food security’ and ‘food sovereignty’ – that inform activism on the right to food globally and their relevance to food system change in South Africa; for both fulfilling the right to food and addressing all forms of malnutrition. We conclude that the emerging concept of food sovereignty has important yet largely unexplored possibilities for democratically managing food systems for better health outcomes.


2013 ◽  
Vol 05 (01) ◽  
pp. 1350002 ◽  
Author(s):  
I. Benedetti ◽  
F. Barbe

A survey of recent contributions on three-dimensional grain-scale mechanical modelling of polycrystalline materials is given in this work. The analysis of material micro-structures requires the generation of reliable micro-morphologies and affordable computational meshes as well as the description of the mechanical behavior of the elementary constituents and their interactions. The polycrystalline microstructure is characterized by the topology, morphology and crystallographic orientations of the individual grains and by the grain interfaces and microstructural defects, within the bulk grains and at the inter-granular interfaces. Their analysis has been until recently restricted to two-dimensional cases, due to high computational requirements. In the last decade, however, the wider affordability of increased computational capability has promoted the development of fully three-dimensional models. In this work, different aspects involved in the grain-scale analysis of polycrystalline materials are considered. Different techniques for generating artificial micro-structures, ranging from highly idealized to experimentally based high-fidelity representations, are briefly reviewed. Structured and unstructured meshes are discussed. The main strategies for constitutive modelling of individual bulk grains and inter-granular interfaces are introduced. Some attention has also been devoted to three-dimensional multiscale approaches and some established and emerging applications have been discussed.


2013 ◽  
Vol 796 ◽  
pp. 513-518
Author(s):  
Rong Jin ◽  
Bing Fei Gu ◽  
Guo Lian Liu

In this paper 110 female undergraduates in Soochow University are measured by using 3D non-contact measurement system and manual measurement. 3D point cloud data of human body is taken as research objects by using anti-engineering software, and secondary development of point cloud data is done on the basis of optimizing point cloud data. In accordance with the definition of the human chest width points and other feature points, and in the operability of the three-dimensional point cloud data, the width, thickness, and length dimensions of the curve through the chest width point are measured. Classification of body type is done by choosing the ratio values as classification index which is the ratio between thickness and width of the curve. The generation rules of the chest curve are determined for each type by using linear regression method. Human arm model could be established by the computer automatically. Thereby the individual model of the female upper body mannequin modeling can be improved effectively.


1998 ◽  
Vol 42 (03) ◽  
pp. 174-186
Author(s):  
C. J. Garrison

A method is presented for evaluation of the motion of long structures composed of interconnected barges, or modules, of arbitrary shape. Such structures are being proposed in the construction of offshore airports or other large offshore floating structures. It is known that the evaluation of the motion of jointed or otherwise interconnected modules which make up a long floating structure may be evaluated by three dimensional radiation/diffraction analysis. However, the computing effort increases rapidly as the complexity of the geometric shape of the individual modules and the total number of modules increases. This paper describes an approximate method which drastically reduces the computational effort without major effects on accuracy. The method relies on accounting for hydrodynamic interaction effects between only adjacent modules within the structure rather than between all of the modules since the near-field interaction is by far the more important. This approximation reduces the computational effort to that of solving the two-module problem regardless of the total number of modules in the complete structure.


2021 ◽  
Author(s):  
Antonio G. Bruno ◽  
Jeremy J. Harrison ◽  
David P. Moore ◽  
Martyn P. Chipperfield ◽  
Richard J. Pope

<p>Hydrogen cyanide (HCN) is one of the most abundant cyanides present in the global atmosphere, and is a tracer of biomass burning, especially for peatland fires. The HCN lifetime is 2–5 months in the troposphere but several years in the stratosphere. Understanding the physical and chemical mechanisms of HCN variability is important due to its non-negligible role in the nitrogen cycle. The main source of tropospheric HCN is biomass burning with minor contributions from industry and transport. The main loss mechanism of atmospheric HCN is the reaction with the hydroxyl radical (OH). Ocean uptake is also important, while in the stratosphere oxidation by reaction with O(<sup>1</sup>D) needs to be considered.</p><p>HCN variability can be investigated using chemical model simulations, such as three-dimensional (3-D) chemical transport models (CTMs). Here we use an adapted version of the TOMCAT 3-D CTM at a 1.2°x1.2° spatial resolution from the surface to ~60 km for 12 idealised HCN tracers which quantify the main loss mechanisms of HCN, including ocean uptake, atmospheric oxidation reactions and their combinations. The TOMCAT output of the HCN distribution in the period 2004-2020 has been compared with HCN profiles measured by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) over an altitude grid from 6 to 42 km. HCN model data have also been compared with ground-based measurements of HCN columns from NDACC FTIR stations and with in-situ volume mixing ratios (VMRs) from NOAA ground-based measurement sites.</p><p>The model outputs for the HCN tracer with full treatment of the loss processes generally agree well with ACE-FTS measurements, as long as we use recent laboratory values for the atmospheric loss reactions. Diagnosis of the individual loss terms shows that decay of the HCN profile in the upper stratosphere is due mainly to the O(<sup>1</sup>D) sink. In order to test the magnitude of the tropospheric OH sink and the magnitude of the ocean sink, we also show the comparisons of the model tracers with surface-based observations. The implications of our results for understanding HCN and its variability are then discussed.</p>


2021 ◽  
Vol 28 (3) ◽  
Author(s):  
A. M. Kalitenko

A numerical study of the effect of betatron oscillations on the second harmonic generation in free-electron lasers (FELs) is presented. Analytical expressions for the effective coupling strength factors are derived that clearly distinguish all contributions in subharmonics and each polarization of the radiation. A three-dimensional time-dependent numerical FEL code that takes into account the main FEL effects and the individual contribution of each electron to the second harmonic generation is presented. Also, the X- and Y-polarizations of the second harmonic are analyzed. The second harmonic was detected in experiments at the Advanced Photon Source (APS) Low Energy Undulator Test Line (LEUTL) and Linac Coherent Light Source (LCLS) in the soft X-ray regime. The approach presented in the article can be useful for a comprehensive study and diagnostics of XFELs. In the paper, the LCLS and Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL) experiments are modeled. The simulation results are in a good agreement with the experimental data.


Sign in / Sign up

Export Citation Format

Share Document