Effects of Reynolds number, plastic number, and flow intensity on the flow and on the heat transfer of a viscoplastic fluid flowing through a planar expansion followed by a contraction

Author(s):  
Luiz Paulo Borges Miranda ◽  
Daniel Dall'Onder dos Santos ◽  
Flavia Schwarz Franceschini Zinani
2019 ◽  
Vol 86 (2) ◽  
pp. 20902 ◽  
Author(s):  
Lyes Nasseri ◽  
Omar Rahli ◽  
Djamel Eddine Ameziani ◽  
Rachid Bennacer

This paper presents a numerical study of heat transfer by convection in a square cavity. The vertical walls of the cavity are differentially heated and the horizontal ones are considered adiabatic. A fan is placed in the middle of the cavity and releases a jet down. Numerical simulation was performed using the lattice Boltzmann method to show the flow patterns and the heat flux depending on the Rayleigh number (thermal convection intensity) and the Reynolds number (fan-driven flow intensity). A parametric study was performed presenting the influence of Reynolds number (20 ≤ Re ≤ 500), Rayleigh number (10 ≤ Ra ≤ 106) and the fan position (0.2 ≤ HF ≤ 0.8). In forced convection mode, the flow structure has been mapped according to the position and the power of the fan. Three structures have emerged: two symmetrical cells, four symmetrical cells and asymmetrical structure. It has been observed that the heat transfer rate increases with the rise of Reynolds number and the reduction of the distance of the fan position from the ceiling. For the latter one, an unfavorable evolution of Nusselt number is observed for Ra > 104.


Author(s):  
Seyed Mostafa Hosseinalipour ◽  
Hamidreza Shahbazian ◽  
Bengt Sunden

AbstractThe present investigation emphases on rotation effects on internal cooling of gas turbine blades both numerically and experimentally. The primary motivation behind this work is to investigate the possibility of heat transfer enhancement by dean vortices generated by Coriolis force and U-bend with developing turbulent in the view point of the field synergy principle and secondary flow intensity analysis. A two-passage internal cooling channel model with a 180° U-turn at the hub section is used in the analysis. The flow is radially outward at the first passage of the square channel and then it will be inward at the second passage. The study covers a Reynolds number (Re) of 10,000, Rotation number (Ro) in the range of 0–0.25, and Density Ratios (DR) at the inlet between 0.1–1.5. The numerical results are compared to experimental data from a rotating facility. Results obtained with the basic RANS SST k-ω model are assessed completely as well. A field synergy principle analysis is consistent with the numerical results too. The results state that the secondary flows due to rotation can considerably improve the synergy between the velocity and temperature gradients up to 20%, which is the most fundamental reason why the rotation can enhance the heat transfer. In addition, the Reynolds number and centrifugal buoyancy variations are found to have no remarkable impact on increasing the synergy angle. Moreover, vortices induced by Rotation number and amplified by Reynolds number increase considerable secondary flow intensity which is exactly in compliance with Nusselt number enhancement.


2017 ◽  
Vol 372 ◽  
pp. 142-151
Author(s):  
Lober Hermany ◽  
Rafael José Klein ◽  
Flavia F.S. Zinani ◽  
Liércio André Isoldi ◽  
Elizaldo Domingues dos Santos ◽  
...  

The present work aims to obtain geometries that ease the heat transfer from elliptical section tubes to cross flow of viscoplastic fluids. The Construtal Design method is applied to obtain aspect ratios between the axes of the elliptic sections that maximize the Nusselt number. The tubes elliptical section area is fixed, but the aspect ratio between their axes is free to change in order to optimize this geometry for different Reynolds numbers (Re). The viscoplastic fluid behavior is modeled using the Herschel-Bulkley constitutive equation for the viscosity function. The governing differential equations are solved numerically by the finite volume method. The values of the dimensionless numbers, Prandtl (Pr), modified Bingham (Bn*) and flow index (n), were kept constant and equal to 1, 1 and 0.4, respectively. The Reynolds number was varied from 1 to 40. The results obtained show that increasing the number of Reynolds results in a greater heat transfer. In addition, the optimal aspect ratio is smaller the greater the Reynolds number is. It was found that, as the aspect ratio grows, heat transfer increases due to flow acceleration, but also decreases due to the low strain rate zone downstream the tube, which possesses recirculation and unyielded material. The balance between these effects gives the optimum point.


Author(s):  
Vadim V. Lemanov ◽  
Viktor I. Terekhov ◽  
Vladimir V. Terekhov

2017 ◽  
Vol 6 (1) ◽  
pp. 35
Author(s):  
Amanulla CH. ◽  
Nagendra N. ◽  
Reddy M. Suryanarayana ◽  
◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document