The effects of casein and whey proteins on the rheological properties of calcium-induced skim milk gels

2021 ◽  
Vol 113 ◽  
pp. 104893
Author(s):  
L. Lin ◽  
H.E. Oh ◽  
H.C. Deeth ◽  
M. Wong
1998 ◽  
Vol 65 (4) ◽  
pp. 555-567 ◽  
Author(s):  
JOHN A. LUCEY ◽  
MICHELLE TAMEHANA ◽  
HARJINDER SINGH ◽  
PETER A. MUNRO

The effect of interactions of denatured whey proteins with casein micelles on the rheological properties of acid milk gels was investigated. Gels were made by acidification of skim milk with glucono-δ-lactone at 30°C using reconstituted skim milk powders (SMP; both low- and ultra-low-heat) and fresh skim milk (FSM). The final pH of the gels was ∼4·6. Milks containing associated or ‘bound’ denatured whey proteins (BDWP) with casein micelles were made by resuspending the ultracentrifugal pellet of heated milk in ultrafiltration permeate. Milks containing ‘soluble’ denatured whey protein (SDWP) aggregates were formed by heat treatment of an ultracentrifugal supernatant which was then resuspended with the pellet. Acid gels made from unheated milks had low storage moduli, G′, of <20 Pa. Heating milks at 80°C for 30 min resulted in acid gels with G′ in the range 390–430 Pa. The loss tangent (tan δ) of gels made from heated milk increased after gelation to attain a maximum at pH ∼5·1, but no maximum was observed in gels made from unheated milk. Acid gels made from milks containing BDWP that were made from low-heat SMP, ultra-low-heat SMP and FSM had G′ of about 250, 270 and 310 Pa respectively. Acid gels made from milks containing SDWP that were made from ultra-low-heat SMP or FSM had G′ values in the range 17–30 Pa, but gels made from low-heat SMP had G′ of ∼140 Pa. It was concluded that BDWP were important for the increased G′ of acid gels made from heated milk. Addition of N-ethylmaleimide (NEM) to low-heat reconstituted milk, to block the —SH groups, resulted in a reduction of the G′ of gels formed from heated milk but did not reduce G′ to the value of unheated milk. Addition of 20 mm-NEM to FSM, prior to heat treatment, resulted in gels with a lower G′ value than gels made from reconstituted low-heat SMP. It was suggested that small amounts of denatured whey proteins associated with casein micelles during low-heat SMP manufacture were probably responsible for the higher G′ of gels made from milk containing SDWP and from milk heated in the presence of 20 mm-NEM, compared with gels made from FSM.


2000 ◽  
Vol 67 (3) ◽  
pp. 415-427 ◽  
Author(s):  
JOHN A. LUCEY ◽  
MICHELLE TAMEHANA ◽  
HARJINDER SINGH ◽  
PETER A. MUNRO

The effects of heat treatment of milk, and a range of rennet and glucono-δ-lactone (GDL) concentrations on the rheological properties, at small and large deformation, of milk gels were investigated. Gels were made from reconstituted skim milk at 30 °C, with two levels each of rennet and GDL. Together with controls this gave a total of sixteen gelation conditions, eight for unheated and eight for heated milk. Acid gels made from unheated milks had low storage moduli (G′) of < 20 Pa. Heating milks at 80 °C for 30 min resulted in a large increase in the G′ value of acid gels. Rennet-induced gels made from unheated milk had G′ values in the range ∼ 80–190 Pa. However, heat treatment severely impaired rennet coagulation: no gel was formed at low rennet levels and only a very weak gel was formed at high levels. In gels made with a combination of rennet and GDL unusual rheological behaviour was observed. After gelation, G′ initially increased rapidly but then remained steady or even decreased, and at long ageing times G′ values increased moderately or remained low. The loss tangent (tan δ) of acid gels made from heated milk increased after gelation to attain a maximum at pH ∼ 5·1 but no maximum was observed in gels made from unheated milk. Gels made by a combination of rennet and GDL also exhibited a maximum in tan δ, indicating increased relaxation behaviour of the protein–protein bonds. We suggest that this maximum in tan δ was caused by a loosening of the intermolecular forces in casein particles caused by solubilization of colloidal calcium phosphate. We also suggest that in combination gels made from unheated milk a low value for the fracture stress and a high tan δ during gelation indicated an increased susceptibility of the network to excessive large scale rearrangements. In contrast, combination gels made from heated milk formed firmer gels crosslinked by denatured whey proteins and underwent fewer large scale rearrangements.


1997 ◽  
Vol 64 (4) ◽  
pp. 591-600 ◽  
Author(s):  
JOHN A. LUCEY ◽  
CHENG TET TEO ◽  
PETER A. MUNRO ◽  
HARJINDER SINGH

The effect of a range of milk heat treatments on the rheological properties, at small and large deformations, of acid skim milk gels was investigated. Gels were made from reconstituted skim milk heated at 75, 80, 85 and 90°C for 15 or 30 min by acidification with glucono-δ-lactone at 30°C. Gels were also made from skim milk powder (SMP) samples that had been given a range of preheat treatments during powder manufacture. Heating milks at temperatures [ges ]80°C for 15 min increased the storage moduli (G′) compared with unheated milk and produced gels with G′ in the range 300–450 Pa. Acid gels made from high-heat or medium-heat SMP had higher G′ than gels made from low-heat or ultra-low-heat SMP. Cooling gels to low temperatures resulted in an increase in G′. The yield stress of gels slightly decreased with mild heat treatments of milk, and then increased again to a maximum, finally decreasing slightly with very high heat treatments of milk. The strain at yielding decreased markedly with increasing heat treatment of milk, making these gels brittle and easier to fracture. We propose that denatured whey proteins aggregated with casein particles during the acidification of heated milk and were responsible for most of the effects observed in this study.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2339
Author(s):  
So-Yul Yun ◽  
Jee-Young Imm

Age gelation is a major quality defect in ultra-high-temperature (UHT) pasteurized milk during extended storage. Changes in plasmin (PL)-induced sedimentation were investigated during storage (23 °C and 37 °C, four weeks) of UHT skim milk treated with PL (2.5, 10, and 15 U/L). The increase in particle size and broadening of the particle size distribution of samples during storage were dependent on the PL concentration, storage period, and storage temperature. Sediment analysis indicated that elevated storage temperature accelerated protein sedimentation. The initial PL concentration was positively correlated with the amount of protein sediment in samples stored at 23 °C for four weeks (r = 0.615; p < 0.01), whereas this correlation was negative in samples stored at 37 °C for the same time (r = −0.358; p < 0.01) due to extensive proteolysis. SDS-PAGE revealed that whey proteins remained soluble over storage at 23 °C for four weeks, but they mostly disappeared from the soluble phase of PL-added samples after two weeks’ storage at 37 °C. Transmission electron micrographs of PL-containing UHT skim milk during storage at different temperatures supported the trend of sediment analysis well. Based on the Fourier transform infrared spectra of UHT skim milk stored at 23 °C for three weeks, PL-induced particle size enlargement was due to protein aggregation and the formation of intermolecular β-sheet structures, which contributed to casein destabilization, leading to sediment formation.


1996 ◽  
Vol 6 (6) ◽  
pp. 645-658 ◽  
Author(s):  
Sylvie L. Turgeon ◽  
Christian Sanchez ◽  
Sylvie F. Gauthier ◽  
Paul Paquin

2019 ◽  
Vol 56 (5) ◽  
pp. 2426-2435 ◽  
Author(s):  
Handge Jyoti Uttamrao ◽  
Ganga Sahay Meena ◽  
Sanket Girdharbhai Borad ◽  
Shinde Ankush Punjaram ◽  
Yogesh Khetra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document