Single-pass, double-pass and acid twin-screw extrusion-cooking impact physicochemical and nutrition-related properties of wheat bran

2020 ◽  
Vol 66 ◽  
pp. 102520
Author(s):  
Chiara Roye ◽  
Hélène Chanvrier ◽  
Muriel Henrion ◽  
Karlien De Roeck ◽  
Yamina De Bondt ◽  
...  
2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Nahemiah Danbaba ◽  
Iro Nkama ◽  
Mamudu Halidu Badau

In this study, seventeen (17) composite blends of broken rice fractions and full-fat soybean, formulated using response surface methodology and central composite design within a range of barrel temperatures (100-140 °C), initial feed moisture content (15-25%) and soybean composition (8-24%), were extruded with a twin-screw extruder and the expansion and color indices were optimized. The results indicated a significant (p<0.05) effect of extrusion conditions on the responses. Fitted predictive models had coefficients of 88.9%, 95.7%, 97.3%, 95.4% and 95.2%, respectively, for expansion index, bulk density, lightness, redness and yellowness. The p-value and lack-of-fit tests of the models could well explain the observed variability and therefore could be used to establish production setting for the twin-screw extruder. The optimum extrusion conditions were found to be 130 °C (barrel temperature), 20% (feed moisture level) and 23% feed soybean composition and optimum responses in terms of bulk density, expansion index, lightness, redness and yellowness chroma indices were 0.21 g cm-3, 128.9%, 17.1, 3.13 and 24.5 respectively. This indicates that optimum conditions can be established in twin-screw extrusion cooking of broken rice fractions and full-fat soybean composite blends that can result in product of low bulk and maximum expansion with a satisfactory light yellow product color that can be used to produce products that valorize broken rice and reduce qualitative postharvest loss.


2018 ◽  
Vol 11 (7) ◽  
pp. 1381-1392 ◽  
Author(s):  
Shifeng Ma ◽  
Hao Wang ◽  
Hongyuan Cheng ◽  
Junguo Li ◽  
Min Xue ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 472
Author(s):  
Chiara Roye ◽  
Muriel Henrion ◽  
Hélène Chanvrier ◽  
Chrystel Loret ◽  
Roberto King ◽  
...  

Extrusion-cooking can be used to change the techno–functional and nutrition-related properties of wheat bran. In this study, pilot-scale (BC21) and industrial-scale (BC45) twin-screw extrusion-cooking using different types of extrusion (single-pass, double-pass and acid extrusion-cooking) and process parameters (temperature, moisture) were compared for their impact on wheat bran. When applying the same process settings, the higher strong water-binding capacity, extract viscosity and extractability displayed by bran extruded using the industrial set-up reflected a more considerable wheat bran structure degradation compared to pilot-scale extrusion-cooking. This was attributed to the overall higher specific mechanical energy (SME), pressure and product temperature that were reached inside the industrial extruder. When changing the type of extrusion-cooking from single-pass to double-pass and acid extrusion-cooking, wheat bran physicochemical characteristics evolved in the same direction, irrespective of extruder scale. The differences in bran characteristics were, however, smaller on industrial-scale. Results show that the differentiating power of the latter can be increased by decreasing the moisture content and increasing product temperature, beyond what is possible in the pilot-scale extruder. This was confirmed by using a BC72 industrial-scale extruder at low moisture content. In conclusion, the extruder scale mainly determines the SME that can be reached and determines the potential to modify wheat bran.


Sign in / Sign up

Export Citation Format

Share Document