scholarly journals Sonodynamic inactivation of Gram-positive and Gram-negative bacteria using a Rose Bengal–antimicrobial peptide conjugate

2017 ◽  
Vol 49 (1) ◽  
pp. 31-36 ◽  
Author(s):  
David Costley ◽  
Heather Nesbitt ◽  
Nigel Ternan ◽  
James Dooley ◽  
Ying-Ying Huang ◽  
...  
1999 ◽  
Vol 43 (5) ◽  
pp. 1274-1276 ◽  
Author(s):  
Manhong Wu ◽  
Robert E. W. Hancock

ABSTRACT Both linear and cyclic derivatives of the cyclic 12-amino-acid antimicrobial peptide bactenecin were designed based on optimization of amphipathicity and charge location. In general, increasing the number of positive charges at the N and C termini and adding an extra tryptophan residue in the loop not only increased the activities against both gram-positive and gram-negative bacteria but also broadened the antimicrobial spectrum.


2009 ◽  
Vol 72 (5) ◽  
pp. 1020-1024 ◽  
Author(s):  
LUBOV Y. BROVKO ◽  
ANN MEYER ◽  
ARVINDER S. TIWANA ◽  
WEI CHEN ◽  
HAN LIU ◽  
...  

The photodynamic bactericidal effect of the photoactive dyes acriflavine neutral, rose bengal, phloxine B, and malachite green (oxalate salt) at concentrations of 5 to 5,000 μg/ml against two gram-negative strains (Escherichia coli LJH 128 and Salmonella Typhimurium C1058), two gram-positive strains (Bacillus sp. C578 and Listeria monocytogenes LJH 375), and yeast (Saccharomyces cerevisiae C1172) was investigated. Incubation of the investigated bacteria with acriflavine neutral under illumination resulted in a significant reduction in cell numbers compared with dark incubation. Rose bengal caused a significant killing effect for bacteria incubated both in the dark and under illumination. Malachite green was active against gram-positive bacteria under illumination and did not affect gram-negative bacteria or yeasts. Incubation with phloxine B resulted in a significant decline in cell numbers for gram-positive bacteria, both in the dark and under illumination; gram-negative bacteria and yeasts were unaffected. Conjugation of rose bengal and phloxine B with poly(vinyl amine) resulted in an enhanced bactericidal effect during both dark and light incubation. This was explained by electrostatic interaction of the polymer with the cell surface, which resulted in closer contact of the photoactive dye and cell. No killing effect was observed for yeasts incubated with dye conjugates. Filter paper treated with dye–poly(vinyl amine) conjugates showed high photodynamic bactericidal activity against the bacterial strains, but not against the yeasts. The extent of bacterial killing depended on the nature and concentration of the dye conjugate and the type of microorganism. The presented data suggest that a photodynamic approach for constructing “self-decontaminating” materials has potential.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2987 ◽  
Author(s):  
Cornelius Domhan ◽  
Philipp Uhl ◽  
Christian Kleist ◽  
Stefan Zimmermann ◽  
Florian Umstätter ◽  
...  

Infections caused by multidrug-resistant bacteria are a global emerging problem. New antibiotics that rely on innovative modes of action are urgently needed. Ranalexin is a potent antimicrobial peptide (AMP) produced in the skin of the American bullfrog Rana catesbeiana. Despite strong antimicrobial activity against Gram-positive bacteria, ranalexin shows disadvantages such as poor pharmacokinetics. To tackle these problems, a ranalexin derivative consisting exclusively of d-amino acids (named danalexin) was synthesized and compared to the original ranalexin for its antimicrobial potential and its biodistribution properties in a rat model. Danalexin showed improved biodistribution with an extended retention in the organisms of Wistar rats when compared to ranalexin. While ranalexin is rapidly cleared from the body, danalexin is retained primarily in the kidneys. Remarkably, both peptides showed strong antimicrobial activity against Gram-positive bacteria and Gram-negative bacteria of the genus Acinetobacter with minimum inhibitory concentrations (MICs) between 4 and 16 mg/L (1.9–7.6 µM). Moreover, both peptides showed lower antimicrobial activities with MICs ≥32 mg/L (≥15.2 µM) against further Gram-negative bacteria. The preservation of antimicrobial activity proves that the configuration of the amino acids does not affect the anticipated mechanism of action, namely pore formation.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Faina Nakonechny ◽  
Michael Nisnevitch ◽  
Yeshayahu Nitzan ◽  
Marina Nisnevitch

Photodynamic antimicrobial chemotherapy based on photosensitizers activated by illumination is limited by poor penetration of visible light through skin and tissues. In order to overcome this problem, Rose Bengal was excited in the dark by 28 kHz ultrasound and was applied for inactivation of bacteria. It is demonstrated, for the first time, that the sonodynamic technique is effective for eradication of Gram-positiveStaphylococcus aureusand Gram-negativeEscherichia coli. The net sonodynamic effect was calculated as a 3-4 log10reduction in bacteria concentration, depending on the cell and the Rose Bengal concentration and the treatment time. Sonodynamic treatment may become a novel and effective form of antimicrobial therapy and can be used for low-temperature sterilization of medical instruments and surgical accessories.


2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Xiang Wen ◽  
Xiaoshen Zhang ◽  
Grzegorz Szewczyk ◽  
Ahmed El-Hussein ◽  
Ying-Ying Huang ◽  
...  

ABSTRACT Rose bengal (RB) is a halogenated xanthene dye that has been used to mediate antimicrobial photodynamic inactivation for several years. While RB is highly active against Gram-positive bacteria, it is largely inactive in killing Gram-negative bacteria. We have discovered that addition of the nontoxic salt potassium iodide (100 mM) potentiates green light (540-nm)-mediated killing by up to 6 extra logs with the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram-positive bacterium methicillin-resistant Staphylococcus aureus, and the fungal yeast Candida albicans. The mechanism is proposed to be singlet oxygen addition to iodide anion to form peroxyiodide, which decomposes into radicals and, finally, forms hydrogen peroxide and molecular iodine. The effects of these different bactericidal species can be teased apart by comparing the levels of killing achieved in three different scenarios: (i) cells, RB, and KI are mixed together and then illuminated with green light; (ii) cells and RB are centrifuged, and then KI is added and the mixture is illuminated with green light; and (iii) RB and KI are illuminated with green light, and then cells are added after illumination with the light. We also showed that KI could potentiate RB photodynamic therapy in a mouse model of skin abrasions infected with bioluminescent P. aeruginosa.


Author(s):  
Jacob S. Hanker ◽  
Paul R. Gross ◽  
Beverly L. Giammara

Blood cultures are positive in approximately only 50 per cent of the patients with nongonococcal bacterial infectious arthritis and about 20 per cent of those with gonococcal arthritis. But the concept that gram-negative bacteria could be involved even in chronic arthritis is well-supported. Gram stains are more definitive in staphylococcal arthritis caused by gram-positive bacteria than in bacterial arthritis due to gram-negative bacteria. In the latter situation where gram-negative bacilli are the problem, Gram stains are helpful for 50% of the patients; they are only helpful for 25% of the patients, however, where gram-negative gonococci are the problem. In arthritis due to gram-positive Staphylococci. Gramstained smears are positive for 75% of the patients.


Sign in / Sign up

Export Citation Format

Share Document