scholarly journals How can one test if a binary sequence is exchangeable? Fork-convex hulls, supermartingales and e-processes

Author(s):  
Aaditya Ramdas ◽  
Johannes Ruf ◽  
Martin Larsson ◽  
Wouter M. Koolen
Keyword(s):  
Author(s):  
Satvir Singh

Steganography is the special art of hidding important and confidential information in appropriate multimedia carrier. It also restrict the detection of  hidden messages. In this paper we proposes steganographic method based on dct and entropy thresholding technique. The steganographic algorithm uses random function in order to select block of the image where the elements of the binary sequence of a secret message will be inserted. Insertion takes place at the lower frequency  AC coefficients of the  block. Before we insert the secret  message. Image under goes dc transformations after insertion of the secret message we apply inverse dc transformations. Secret message will only be inserted into a particular block if  entropy value of that particular block is greater then threshold value of the entropy and if block is selected by the random function. In  Experimental work we calculated the peak signal to noise ratio(PSNR), Absolute difference , Relative entropy. Proposed algorithm give high value of PSNR  and low value of Absolute difference which clearly indicate level of distortion in image due to insertion of secret message is reduced. Also value of  relative entropy is close to zero which clearly indicate proposed algorithm is sufficiently secure. 


Fractals ◽  
2020 ◽  
Vol 28 (02) ◽  
pp. 2050050
Author(s):  
V. E. ARCE-GUEVARA ◽  
M. O. MENDEZ ◽  
J. S. MURGUÍA ◽  
A. ALBA ◽  
H. GONZÁLEZ-AGUILAR ◽  
...  

In this work, the scaling behavior of the sleep process is evaluated by using detrended fluctuation analysis based on wavelets. The analysis is carried out from arrivals of short and recurrent cortical events called A-phases, which in turn build up the Cyclic Alternating Pattern phenomenon, and are classified in three types: A1, A2 and A3. In this study, 61 sleep recordings corresponding to healthy, nocturnal frontal lobe epilepsy patients and sleep-state misperception subjects, were analyzed. From the A-phase annotations, the onsets were extracted and a binary sequence with one second resolution was generated. An item in the sequence has a value of one if an A-phase onset occurs in the corresponding window, and a value of zero otherwise. In addition, we consider other different temporal resolutions from 2[Formula: see text]s to 256[Formula: see text]s. Furthermore, the same analysis was carried out for sequences obtained from the different types of A-phases and their combinations. The results of the numerical analysis showed a relationship between the time resolutions and the scaling exponents; specifically, for higher time resolutions a white noise behavior is observed, whereas for lower time resolutions a behavior towards to [Formula: see text]-noise is exhibited. Statistical differences among groups were observed by applying various wavelet functions from the Daubechies family and choosing the appropriate sequence of A-phase onsets. This scaling analysis allows the characterization of the free-scale dynamic of the sleep process that is specific for each sleep condition. The scaling exponent could be useful as a diagnosis parameter in clinics when sleep macrostructure does not offer enough information.


2021 ◽  
Vol 9 ◽  
Author(s):  
Joseph Malkoun ◽  
Peter J. Olver

Abstract Given n distinct points $\mathbf {x}_1, \ldots , \mathbf {x}_n$ in $\mathbb {R}^d$ , let K denote their convex hull, which we assume to be d-dimensional, and $B = \partial K $ its $(d-1)$ -dimensional boundary. We construct an explicit, easily computable one-parameter family of continuous maps $\mathbf {f}_{\varepsilon } \colon \mathbb {S}^{d-1} \to K$ which, for $\varepsilon> 0$ , are defined on the $(d-1)$ -dimensional sphere, and whose images $\mathbf {f}_{\varepsilon }({\mathbb {S}^{d-1}})$ are codimension $1$ submanifolds contained in the interior of K. Moreover, as the parameter $\varepsilon $ goes to $0^+$ , the images $\mathbf {f}_{\varepsilon } ({\mathbb {S}^{d-1}})$ converge, as sets, to the boundary B of the convex hull. We prove this theorem using techniques from convex geometry of (spherical) polytopes and set-valued homology. We further establish an interesting relationship with the Gauss map of the polytope B, appropriately defined. Several computer plots illustrating these results are included.


Algorithmica ◽  
1991 ◽  
Vol 6 (1-6) ◽  
pp. 533-553 ◽  
Author(s):  
Chanderjit Bajaj ◽  
Myung -Soo Kim

2010 ◽  
Vol 124 (1-2) ◽  
pp. 33-43 ◽  
Author(s):  
Kurt M. Anstreicher ◽  
Samuel Burer

Sign in / Sign up

Export Citation Format

Share Document