Strategies of poly(3-hydroxybutyrate) synthesis by Haloarcula sp. IRU1 utilizing glucose as carbon source: Optimization of culture conditions by Taguchi methodology

2010 ◽  
Vol 47 (5) ◽  
pp. 632-634 ◽  
Author(s):  
Mojtaba Taran ◽  
Homeira Amirkhani
2021 ◽  
Vol 9 (6) ◽  
pp. 678
Author(s):  
Kaliyamoorthy Kalidasan ◽  
Nabikhan Asmathunisha ◽  
Venugopal Gomathi ◽  
Laurent Dufossé ◽  
Kandasamy Kathiresan

This work deals with the identification of a predominant thraustochytrid strain, the optimization of culture conditions, the synthesis of nanoparticles, and the evaluation of antioxidant and antimicrobial activities in biomass extracts and nanoparticles. Thraustochytrium kinnei was identified as a predominant strain from decomposing mangrove leaves, and its culture conditions were optimized for maximum biomass production of 13.53 g·L−1, with total lipids of 41.33% and DHA of 39.16% of total fatty acids. Furthermore, the strain was shown to synthesize gold and silver nanoparticles in the size ranges of 10–85 nm and 5–90 nm, respectively. Silver nanoparticles exhibited higher total antioxidant and DPPH activities than gold nanoparticles and methanol extract of the strain. The silver nanoparticles showed higher antimicrobial activity than gold nanoparticles and petroleum ether extract of the strain. Thus, Thraustochytrium kinnei is proven to be promising for synthesis of silver nanoparticles with high antioxidant and antimicrobial activity.


Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 88
Author(s):  
Paulina Snopek ◽  
Dorota Nowak ◽  
Bartłomiej Zieniuk ◽  
Agata Fabiszewska

Yarrowia lipolytica is one of the most studied non-conventional forms of yeast, exhibiting a high secretory capacity and producing many industrially important and valuable metabolites. The yeast conceals a great biotechnological potential to synthesize organic acids, sweeteners, microbial oil, or fragrances. The vast majority of bioprocesses are carried out in bioreactors, where suitable culture conditions are provided. In the current study, the effect of agitation speed (200–600 rpm) and air flow rate (0.0375–2.0 dm3/(dm3 × min)) on the biomass yield and lipase activity of Y. lipolytica KKP 379 is analyzed in a growth medium containing waste fish oil. The increase of aeration intensity limited the period of oxygen deficit in the medium. Simultaneously, an increase in lipolytic activity was observed from 2.09 U/cm3 to 14.21 U/cm3; however, an excessive agitation speed likely caused oxidative or shear stresses, and a reduction in lipolytic activity was observed. Moreover, it is confirmed that the synthesis of lipases is related to oxygen consumption, pH, and the yeast growth phase, and appropriate process selection may provide two advantages, namely, the maximum use of the waste carbon source and the production of lipolytic enzymes that are valuable in many industries.


2011 ◽  
Vol 13 (6) ◽  
pp. 539-549 ◽  
Author(s):  
Ruchi Sharma ◽  
Aman George ◽  
Nitin Manchindra Kamble ◽  
Karn Pratap Singh ◽  
Manmohan Singh Chauhan ◽  
...  

2021 ◽  
Vol 43 (3) ◽  
pp. 27-35
Author(s):  
Pham Viet Cuong ◽  
Nguyen Phuong Hoa

The bacteria capable of fixing atmospheric nitrogen were isolated from cassava cultivated soils of Vietnam. The potential isolates were identified by analyzing the 16S rRNA gene and by morphological, biochemical, cultural characteristics. The selected isolates were assigned to the species Bacillus sp. DQT2 M17, Bacillus subtilis DTAN6 M17, and Bacillus megaterium DSHB I8. The effect of culture conditions on the nitrogen-fixing activity of three selected isolates were studied and the obtained results showed that the highest amount of accumulated ammonia was detected after 6 days of incubation at 35 oC, pH 7.0 with sucrose as a carbon source. The selected strains could be exploited as inoculants for microbial fertilizer production.


Sign in / Sign up

Export Citation Format

Share Document