Effect of unconventional carbon sources on biosurfactant production and its application in bioremediation

Author(s):  
Rakeshkumar M. Jain ◽  
Kalpana Mody ◽  
Nidhi Joshi ◽  
Avinash Mishra ◽  
Bhavanath Jha
2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Gizele Cardoso Fontes ◽  
Priscilla Filomena Fonseca Amaral ◽  
Marcio Nele ◽  
Maria Alice Zarur Coelho

In order to improve biosurfactant production byYarrowia lipolyticaIMUFRJ 50682, a factorial design was carried out. A24full factorial design was used to investigate the effects of nitrogen sources (urea, ammonium sulfate, yeast extract, and peptone) on maximum variation of surface tension (ΔST) and emulsification index (EI). The best results (67.7% of EI and 20.9 mNm−1ofΔST) were obtained in a medium composed of 10 g 1−1of ammonium sulfate and 0.5 g 1−1of yeast extract. Then, the effects of carbon sources (glycerol, hexadecane, olive oil, and glucose) were evaluated. The most favorable medium for biosurfactant production was composed of both glucose (4% w/v) and glycerol (2% w/v), which provided an EI of 81.3% and aΔST of 19.5 mN m−1. The experimental design optimization enhancedΔEI by 110.7% andΔST by 108.1% in relation to the standard process.


2012 ◽  
Vol 79 (1) ◽  
pp. 400-402 ◽  
Author(s):  
Xing-Biao Wang ◽  
Yong Nie ◽  
Yue-Qin Tang ◽  
Gang Wu ◽  
Xiao-Lei Wu

ABSTRACTUpon growth onn-hexadecane (C16),n-tetracosane (C24), andn-hexatriacontane (C36),Dietziasp. strain DQ12-45-1b could produce different glycolipids, phospholipids, and lipopeptides. Interestingly, cultivation with C36increased cell surface hydrophobic activity, which attenuated the negative effect of the decline of the emulsification activity. These results suggest that the mechanisms of biosurfactant production and cell surface hydrophobicity are dependent upon the chain lengths of then-alkanes used as carbon sources.


2019 ◽  
Vol 9 (1) ◽  
pp. 77-86
Author(s):  
Rafeya Sohail ◽  
Nazia Jamil

AbstractBiosurfactants are surface-active metabolites produced by microorganisms. Biosurfactants tend to solubilize hydrocarbons in the surrounding environment, by reducing surface tension and increasing carbon uptake. In this study, isolation of biosurfactant producing bacteria and effect of renewable, non-fossil fuel based carbon sources on production were assessed. Oil field produced water was collected from Potwar oil fields and thirteen strains were isolated. Strains were screened for biosurfactant production by hemolysis test, emulsification index test, emulsification assay, oil displacement test, drop collapse test, tilted glass slide test and oil coated agar emulsification test. Strains were further screened for maximum production on cost effective renewable carbon source e.g. glucose, waste glycerol and animal fat. Promising strains were identified as Bacillus subtilis (MH142143), Pseudomonas aeruginosa (MH142144), Bacillus tequilensis (MH142145) and Bacillus safensis (MH142146) by 16S rRNA gene sequencing. Among all isolates, highest biosurfactant production on glucose (37%), glycerol (48%) and animal fat oil (49%), after 24 h cultivation was by Pseudomonas aeruginosa. Biosurfactant showed similarity to rhamnolipids by Thin Layer Chromatography (TLC). Assessment of bioactive propertiaes of rhamnolipid showed strong antimicrobial activity against Bacillus spp. Future investigations can be focused on application of these strains in environmental as well as industrial sectors.


2002 ◽  
Vol 46 (1-2) ◽  
pp. 519-524 ◽  
Author(s):  
K.R. Pagilla ◽  
A. Sood ◽  
H. Kim

Gordonia amarae, a filamentous actinomycete, commonly found in foaming activated sludge wastewater treatment plants was investigated for its biosurfactant production capability. Soluble acetate and sparingly soluble hexadecane were used as carbon sources for G. amarae growth and biosurfactant production in laboratory scale batch reactors. The lowest surface tension (critical micelle concentration, CMC) of the cell-free culture broth was 55 dynes/cm when 1,900 mg/L acetate was used as the sole carbon source. The lowest surface tension was less than 40 dynes/cm when either 1% (v/v) hexadecane or a mixture of 1% (v/v) hexadecane and 0.5% (w/v) acetate was used as the carbon source. The maximum biomass concentration (the stationary phase) was achieved after 4 days when acetate was used along with hexadecane, whereas it took about 8 days to achieve the stationary phase with hexadecane alone. The maximum biosurfactant production was 3 × CMC with hexadecane as the sole carbon source, and it was 5 × CMC with the mixture of hexadecane and acetate. Longer term growth studies (∼ 35 days of culture growth) indicated that G. amarae produces biosurfactant in order to solubilize hexadecane, and that adding acetate improves its biosurfactant production by providing readily degradable substrate for initial biomass growth. This research confirms that the foaming problems in activated sludge containing G. amarae in the activated sludge are due to the biosurfactant production by G. amarae when hydrophobic substrates such as hexadecane are present.


2009 ◽  
Vol 64 (1-2) ◽  
pp. 96-102 ◽  
Author(s):  
Emilia Stoimenova ◽  
Evgenia Vasileva-Tonkova ◽  
Anna Sotirova ◽  
Danka Galabova ◽  
Zdravko Lalchev

The indigenous strain Pseudomonas fluorescens, isolated from industrial wastewater, was able to produce glycolipid biosurfactants from a variety of carbon sources, including hydrophilic compounds, hydrocarbons, mineral oils, and vegetable oils. Hexadecane, mineral oils, vegetable oils, and glycerol were preferred carbon sources for growth and biosurfactant production by the strain. Biosurfactant production was detected by measuring the surface and interfacial tension, rhamnose concentration and emulsifying activity. The surface tension of supernatants varied from 28.4 mN m-1 with phenanthrene to 49.6 mN m-1 with naphthalene and heptane as carbon sources. The interfacial tension has changed in a narrow interval between 6.4 and 7.6 mN m-1. The emulsifying activity was determined to be highest in media with vegetable oils as substrates. The biosurfactant production on insoluble carbon sources contributed to a signifi cant increase of cell hydrophobicity and correlated with an increased growth of the strain on these substrates. Based on these results, a mechanism of biosurfactant-enhanced interfacial uptake of hydrophobic substrates could be proposed as predominant for the strain. With hexadecane as a carbon source, the pH value of 7.0 - 7.2 and temperature of (28 ± 2) °C were optimum for growth and biosurfactant production by P. fluorescens cells. The increased specific protein and biosurfactant release during growth of the strain on hexadecane in the presence of NaCl at contents up to 2% could be due to increased cell permeability. The capability of P. fluorescens strain HW-6 to adapt its own metabolism to use different nutrients as energy sources and to keep up relatively high biosurfactant levels in the medium during the stationary phase is a promising feature for its possible application in biological treatments.


Sign in / Sign up

Export Citation Format

Share Document