scholarly journals Author Correction: Biosurfactant Production by Lactic Acid Bacterium Pediococcus dextrinicus SHU1593 Grown on Different Carbon Sources: Strain Screening Followed by Product Characterization

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Abouzar Ghasemi ◽  
Marzieh Moosavi-Nasab ◽  
Payam Setoodeh ◽  
Gholamreza Mesbahi ◽  
Gholamhossein Yousefi
Author(s):  
Rakeshkumar M. Jain ◽  
Kalpana Mody ◽  
Nidhi Joshi ◽  
Avinash Mishra ◽  
Bhavanath Jha

2006 ◽  
Vol 188 (23) ◽  
pp. 8070-8078 ◽  
Author(s):  
Shinya Sugimoto ◽  
Hiroyuki Yoshida ◽  
Yoshimitsu Mizunoe ◽  
Keigo Tsuruno ◽  
Jiro Nakayama ◽  
...  

ABSTRACT In this study, we report the purification, initial structural characterization, and functional analysis of the molecular chaperone ClpB from the gram-positive, halophilic lactic acid bacterium Tetragenococcus halophilus. A recombinant T. halophilus ClpB (ClpB Tha ) was overexpressed in Escherichia coli and purified by affinity chromatography, hydroxyapatite chromatography, and gel filtration chromatography. As demonstrated by gel filtration chromatography, chemical cross-linking with glutaraldehyde, and electron microscopy, ClpB Tha forms a homohexameric single-ring structure in the presence of ATP under nonstress conditions. However, under stress conditions, such as high-temperature (>45°C) and high-salt concentrations (>1 M KCl), it dissociated into dimers and monomers, regardless of the presence of ATP. The hexameric ClpB Tha reactivated heat-aggregated proteins dependent upon the DnaK system from T. halophilus (KJE Tha ) and ATP. Interestingly, the mixture of dimer and monomer ClpB Tha , which was formed under stress conditions, protected substrate proteins from thermal inactivation and aggregation in a manner similar to those of general molecular chaperones. From these results, we hypothesize that ClpB Tha forms dimers and monomers to function as a holding chaperone under stress conditions, whereas it forms a hexamer ring to function as a disaggregating chaperone in cooperation with KJE Tha and ATP under poststress conditions.


2014 ◽  
Vol 23 (5) ◽  
pp. 1541-1550 ◽  
Author(s):  
Apinun Kanpiengjai ◽  
Wannisa Rieantrakoonchai ◽  
Ronachai Pratanaphon ◽  
Wasu Pathom-aree ◽  
Saisamorn Lumyong ◽  
...  

2017 ◽  
Vol 5 (30) ◽  
Author(s):  
Yanath Belguesmia ◽  
Valérie Leclère ◽  
Matthieu Duban ◽  
Eric Auclair ◽  
Djamel Drider

ABSTRACT We report the draft genome sequence of Enterococcus faecalis DD14, a strain isolated from meconium of a healthy newborn at Roubaix Hospital (France). The strain displayed antagonism against a set of Gram-positive bacteria through concomitant production of lactic acid and bacteriocin. The genome has a size of 2,893,365 bp and a 37.3% G+C ratio and is predicted to contain at least 2,755 coding sequences and 62 RNAs.


2011 ◽  
Vol 102 (7) ◽  
pp. 4827-4833 ◽  
Author(s):  
Paulraj Kanmani ◽  
R. Satish kumar ◽  
N. Yuvaraj ◽  
K.A. Paari ◽  
V. Pattukumar ◽  
...  

2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Gizele Cardoso Fontes ◽  
Priscilla Filomena Fonseca Amaral ◽  
Marcio Nele ◽  
Maria Alice Zarur Coelho

In order to improve biosurfactant production byYarrowia lipolyticaIMUFRJ 50682, a factorial design was carried out. A24full factorial design was used to investigate the effects of nitrogen sources (urea, ammonium sulfate, yeast extract, and peptone) on maximum variation of surface tension (ΔST) and emulsification index (EI). The best results (67.7% of EI and 20.9 mNm−1ofΔST) were obtained in a medium composed of 10 g 1−1of ammonium sulfate and 0.5 g 1−1of yeast extract. Then, the effects of carbon sources (glycerol, hexadecane, olive oil, and glucose) were evaluated. The most favorable medium for biosurfactant production was composed of both glucose (4% w/v) and glycerol (2% w/v), which provided an EI of 81.3% and aΔST of 19.5 mN m−1. The experimental design optimization enhancedΔEI by 110.7% andΔST by 108.1% in relation to the standard process.


Sign in / Sign up

Export Citation Format

Share Document