In vivo cough suppressive activity of pectic polysaccharide with arabinogalactan type II side chains of Piper nigrum fruits and its synergistic effect with piperine

2017 ◽  
Vol 99 ◽  
pp. 335-342 ◽  
Author(s):  
Sadhana Khawas ◽  
Gabriela Nosáľová ◽  
Sujay Kumar Majee ◽  
Kanika Ghosh ◽  
Washim Raja ◽  
...  
2020 ◽  
Author(s):  
M Centanni ◽  
Susan Carnachan ◽  
Tracey Bell ◽  
Alison Daines ◽  
Simon Hinkley ◽  
...  

© 2019 American Chemical Society. Pectic polysaccharides from New Zealand (NZ) spinach (Tetragonia tetragonioides) and karaka berries (Corynocarpus laevigatus) were extracted and analyzed. NZ spinach polysaccharides comprised mostly homogalacturonan (64.4%) and rhamnogalacturonan I (5.8%), with side chains of arabinan (8.1%), galactan (2.2%), and type II arabinogalactan (7.1%); karaka berry polysaccharides comprised homogalacturonan (21.8%) and rhamnogalacturonan I (10.0%), with greater proportions of side chains (arabinan, 15.6%; galactan, 23.8%; and type II arabinogalactan, 19.3%). Screening of gut commensal Bacteroides showed that six were able to grow on the NZ spinach extract, while five were able to grow on the karaka berry extract. Analysis of the polysaccharides remaining after fermentation, by size-exclusion chromatography and constituent sugar analysis, showed that the Bacteroides species that grew on these two substrates showed preferences for the different pectic polysaccharide types. Our data suggest that, to completely degrade and utilize the complex pectin structures found in plants, members of Bacteroides and other bowel bacteria work as metabolic consortia.


2020 ◽  
Author(s):  
M Centanni ◽  
Susan Carnachan ◽  
Tracey Bell ◽  
Alison Daines ◽  
Simon Hinkley ◽  
...  

© 2019 American Chemical Society. Pectic polysaccharides from New Zealand (NZ) spinach (Tetragonia tetragonioides) and karaka berries (Corynocarpus laevigatus) were extracted and analyzed. NZ spinach polysaccharides comprised mostly homogalacturonan (64.4%) and rhamnogalacturonan I (5.8%), with side chains of arabinan (8.1%), galactan (2.2%), and type II arabinogalactan (7.1%); karaka berry polysaccharides comprised homogalacturonan (21.8%) and rhamnogalacturonan I (10.0%), with greater proportions of side chains (arabinan, 15.6%; galactan, 23.8%; and type II arabinogalactan, 19.3%). Screening of gut commensal Bacteroides showed that six were able to grow on the NZ spinach extract, while five were able to grow on the karaka berry extract. Analysis of the polysaccharides remaining after fermentation, by size-exclusion chromatography and constituent sugar analysis, showed that the Bacteroides species that grew on these two substrates showed preferences for the different pectic polysaccharide types. Our data suggest that, to completely degrade and utilize the complex pectin structures found in plants, members of Bacteroides and other bowel bacteria work as metabolic consortia.


Diabetes ◽  
1993 ◽  
Vol 42 (5) ◽  
pp. 764-772 ◽  
Author(s):  
E. Bonora ◽  
R. C. Bonadonna ◽  
S. Del Prato ◽  
G. Gulli ◽  
A. Solini ◽  
...  
Keyword(s):  

2006 ◽  
Vol 26 (3) ◽  
pp. 965-975 ◽  
Author(s):  
Tom S. Kim ◽  
Cynthia Heinlein ◽  
Robert C. Hackman ◽  
Peter S. Nelson

ABSTRACT Tmprss2 encodes an androgen-regulated type II transmembrane serine protease (TTSP) expressed highly in normal prostate epithelium and has been implicated in prostate carcinogenesis. Although in vitro studies suggest protease-activated receptor 2 may be a substrate for TMPRSS2, the in vivo biological activities of TMPRSS2 remain unknown. We generated Tmprss2 −/− mice by disrupting the serine protease domain through homologous recombination. Compared to wild-type littermates, Tmprss2 −/− mice developed normally, survived to adulthood with no differences in protein levels of prostatic secretions, and exhibited no discernible abnormalities in organ histology or function. Loss of TMPRSS2 serine protease activity did not influence fertility, reduce survival, result in prostate hyperplasia or carcinoma, or alter prostatic luminal epithelial cell regrowth following castration and androgen replacement. Lack of an observable phenotype in Tmprss2 −/− mice was not due to transcriptional compensation by closely related Tmprss2 homologs. We conclude that the lack of a discernible phenotype in Tmprss2 −/− mice suggests functional redundancy involving one or more of the type II transmembrane serine protease family members or other serine proteases. Alternatively, TMPRSS2 may contribute a specialized but nonvital function that is apparent only in the context of stress, disease, or other systemic perturbation.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Dan Hou ◽  
Ling Li ◽  
Tengfei Ma ◽  
Jialong Pei ◽  
Zhongyu Zhao ◽  
...  

AbstractBamboo is known for its edible shoots and beautiful texture and has considerable economic and ornamental value. Unique among traditional flowering plants, many bamboo plants undergo extensive synchronized flowering followed by large-scale death, seriously affecting the productivity and application of bamboo forests. To date, the molecular mechanism of bamboo flowering characteristics has remained unknown. In this study, a SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1)-like gene, BoMADS50, was identified from Bambusa oldhamii. BoMADS50 was highly expressed in mature leaves and the floral primordium formation period during B. oldhamii flowering and overexpression of BoMADS50 caused early flowering in transgenic rice. Moreover, BoMADS50 could interact with APETALA1/FRUITFULL (AP1/FUL)-like proteins (BoMADS14-1/2, BoMADS15-1/2) in vivo, and the expression of BoMADS50 was significantly promoted by BoMADS14-1, further indicating a synergistic effect between BoMADS50 and BoAP1/FUL-like proteins in regulating B. oldhamii flowering. We also identified four additional transcripts of BoMADS50 (BoMADS50-1/2/3/4) with different nucleotide variations. Although the protein-CDS were polymorphic, they had flowering activation functions similar to those of BoMADS50. Yeast one-hybrid and transient expression assays subsequently showed that both BoMADS50 and BoMADS50-1 bind to the promoter fragment of itself and the SHORT VEGETATIVE PHASE (SVP)-like gene BoSVP, but only BoMADS50-1 can positively induce their transcription. Therefore, nucleotide variations likely endow BoMADS50-1 with strong regulatory activity. Thus, BoMADS50 and BoMADS50-1/2/3/4 are probably important positive flowering regulators in B. oldhamii. Moreover, the functional conservatism and specificity of BoMADS50 and BoMADS50-1 might be related to the synchronized and sporadic flowering characteristics of B. oldhamii.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1571
Author(s):  
Matilde Tschon ◽  
Francesca Salamanna ◽  
Lucia Martini ◽  
Gianluca Giavaresi ◽  
Luca Lorenzini ◽  
...  

The purpose of this study was to verify the efficacy of a single intra-articular (i.a.) injection of a hyaluronic acid-chitlac (HY-CTL) enriched with two low dosages of triamcinolone acetonide (TA, 2.0 mg/mL and 4.5 mg/mL), in comparison with HY-CTL alone, with a clinical control (TA 40 mg/mL) and with saline solution (NaCl) in an in vivo osteoarthritis (OA) model. Seven days after chemical induction of OA, 80 Sprague Dawley male rats were grouped into five arms (n = 16) and received a single i.a. injection of: 40 mg/mL TA, HY-CTL alone, HY-CTL with 2.0 mg/mL TA (RV2), HY-CTL with 4.5 mg/mL TA (RV4.5) and 0.9% NaCl. Pain sensitivity and Catwalk were performed at baseline and at 7, 14 and 21 days after the i.a. treatments. The histopathology of the joint, meniscus and synovial reaction, type II collagen expression and aggrecan expression were assessed 21 days after treatments. RV4.5 improved the local pain sensitivity in comparison with TA and NaCl. RV4.5 and TA exerted similar beneficial effects in all gait parameters. Histopathological analyses, measured by Osteoarthritis Research Society International (OARSI) and Kumar scores and by immunohistochemistry, evidenced that RV4.5 and TA reduced OA features in the same manner and showed a stronger type II collagen and aggrecan expression; both treatments reduced synovitis, as measured by Krenn score and, at the meniscus level, RV4.5 improved degenerative signs as evaluated by Pauli score. TA or RV4.5 treatments limited the local articular cartilage deterioration in knee OA with an improvement of the physical structure of articular cartilage, gait parameters, the sensitivity to local pain and a reduction of the synovial inflammation.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Songtao Zhang ◽  
Longhai Jin ◽  
Jianhua Liu ◽  
Yang Liu ◽  
Tianqi Zhang ◽  
...  

AbstractIn spite of the tumor microenvironments responsive cancer therapy based on Fenton reaction (i.e., chemodynamic therapy, CDT) has been attracted more attentions in recent years, the limited Fenton reaction efficiency is the important obstacle to further application in clinic. Herein, we synthesized novel FeO/MoS2 nanocomposites modified by bovine serum albumin (FeO/MoS2-BSA) with boosted Fenton reaction efficiency by the synergistic effect of co-catalyze and photothermal effect of MoS2 nanosheets triggered by the second near-infrared (NIR II) light. In the tumor microenvironments, the MoS2 nanosheets not only can accelerate the conversion of Fe3+ ions to Fe2+ ions by Mo4+ ions on their surface to improve Fenton reaction efficiency, but also endow FeO/MoS2-BSA with good photothermal performances for photothermal-enhanced CDT and photothermal therapy (PTT). Consequently, benefiting from the synergetic-enhanced CDT/PTT, the tumors are eradicated completely in vivo. This work provides innovative synergistic strategy for constructing nanocomposites for highly efficient CDT.


2006 ◽  
Vol 80 (1) ◽  
pp. 332-341 ◽  
Author(s):  
Kathleen McGee-Estrada ◽  
Hung Fan

ABSTRACT Jaagsiekte sheep retrovirus (JSRV) is the causative agent of ovine pulmonary adenocarcinoma, a contagious lung cancer of sheep that arises from type II pneumocytes and Clara cells of the lung epithelium. Studies of the tropism of this virus have been hindered by the lack of an efficient system for viral replication in tissue culture. To map regulatory regions important for transcriptional activation, an in vivo footprinting method that couples dimethyl sulfate treatment and ligation-mediated PCR was performed in murine type II pneumocyte-derived MLE-15 cells infected with a chimeric Moloney murine leukemia virus driven by the JSRV enhancers (ΔMo+JS Mo-MuLV). In vivo footprints were found in the JSRV enhancers in two regions previously shown to be important for JSRV long terminal repeat (LTR) activity: a binding site for the lung-specific transcription factor HNF-3β and an E-box element in the distal enhancer adjacent to an NF-κB-like binding site. In addition, in vivo footprints were detected in two downstream motifs likely to bind C/EBP and NF-I. Mutational analysis of a JSRV LTR reporter construct (pJS21luc) revealed that the C/EBP binding site is critical for LTR activity, while the putative NF-I binding element is less important; elimination of these sites resulted in 70% and 40% drops in LTR activity, respectively. Electrophoretic mobility shift assays using nuclear extracts from MLE-15 murine Clara cell-derived mtCC1-2 cells with probes corresponding to the NF-I or C/EBP sites revealed several complexes. Antiserum directed against NF-IA, C/EBPα, or C/EBPβ supershifted the corresponding protein-DNA complexes, indicating that these isoforms, which are also important for the expression of several cellular lung-specific genes, may be important for JSRV expression in lung epithelial cells.


2015 ◽  
Vol 42 (7) ◽  
pp. 1042-1049 ◽  
Author(s):  
Yu Zhang ◽  
Ying Zhong ◽  
Mei Hu ◽  
Nanxi Xiang ◽  
Yao Fu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document