Self-assembly of natural protein and imidazole molecules on gold nanoparticles: Applications in wound healing against multi-drug resistant bacteria

2018 ◽  
Vol 119 ◽  
pp. 505-516 ◽  
Author(s):  
Bitao Lu ◽  
Fei Lu ◽  
Luoxiao Ran ◽  
Kun Yu ◽  
Yang Xiao ◽  
...  
2021 ◽  
Author(s):  
xiang su ◽  
ruihua liu ◽  
Ying Li ◽  
Ting Han ◽  
Zhijun Zhang ◽  
...  

Poly(phenyleneethynylene) (PPE) is a widely used functional conjugated polymer with applications ranging from organic optoelectronics and fluorescence sensors to optical imaging and theranostics. However, the fluorescence efficiency of PPE in aggregate states is generally not as good as their solution states, which greatly compromises their performance in fluorescence-related applications. Herein, we design and synthesize a series of PPE derivatives with typical aggregation-induced emission (AIE) properties. In these PPEs, the diethylamino-substituted tetraphenylethene units function as the long-wavelength AIE source and the alkyl side chains serve as the functionalization site. The obtained AIE-active PPEs with large π-conjugation show strong aggregate-state fluorescence, interesting self-assembly behaviors, inherently enhanced alkyne vibrations in the Raman-silent region of cells, and efficient antibacterial activities. The PPE nanoparticles with good cellular uptake capability can clearly and sensitively visualize the tumor region and residual tumors via their fluorescence and Raman signals, respectively, to benefit the precise tumor surgery. After post-functionalization, the obtained PPE-based polyelectrolyte can preferentially image bacteria over mammalian cells and possesses efficient photodynamic killing capability against Gram-positive and drug-resistant bacteria. This work provides a feasible design strategy for developing multifunctional conjugated polymers with multimodal imaging capability as well as photodynamic antimicrobial ability.


2022 ◽  
Vol 9 ◽  
Author(s):  
Tamara Matthyssen ◽  
Wenyi Li ◽  
James A. Holden ◽  
Jason C. Lenzo ◽  
Sara Hadjigol ◽  
...  

Antimicrobial peptides (AMPs) are found in nearly all living organisms, show broad spectrum antibacterial activity, and can modulate the immune system. Furthermore, they have a very low level of resistance induction in bacteria, which makes them an ideal target for drug development and for targeting multi-drug resistant bacteria ‘Superbugs’. Despite this promise, AMP therapeutic use is hampered as typically they are toxic to mammalian cells, less active under physiological conditions and are susceptible to proteolytic degradation. Research has focused on addressing these limitations by modifying natural AMP sequences by including e.g., d-amino acids and N-terminal and amino acid side chain modifications to alter structure, hydrophobicity, amphipathicity, and charge of the AMP to improve antimicrobial activity and specificity and at the same time reduce mammalian cell toxicity. Recently, multimerisation (dimers, oligomer conjugates, dendrimers, polymers and self-assembly) of natural and modified AMPs has further been used to address these limitations and has created compounds that have improved activity and biocompatibility compared to their linear counterparts. This review investigates how modifying and multimerising AMPs impacts their activity against bacteria in planktonic and biofilm states of growth.


ACS Nano ◽  
2014 ◽  
Vol 8 (10) ◽  
pp. 10682-10686 ◽  
Author(s):  
Xiaoning Li ◽  
Sandra M. Robinson ◽  
Akash Gupta ◽  
Krishnendu Saha ◽  
Ziwen Jiang ◽  
...  

Nanoscale ◽  
2016 ◽  
Vol 8 (27) ◽  
pp. 13223-13227 ◽  
Author(s):  
Yan Feng ◽  
Wenwen Chen ◽  
Yuexiao Jia ◽  
Yue Tian ◽  
Yuyun Zhao ◽  
...  

2020 ◽  
Vol 559 ◽  
pp. 313-323 ◽  
Author(s):  
Weishuai Ma ◽  
Tingting Zhang ◽  
Ronggui Li ◽  
Yusheng Niu ◽  
Xuecheng Yang ◽  
...  

2021 ◽  
Author(s):  
xiang su ◽  
ruihua liu ◽  
Ying Li ◽  
Ting Han ◽  
Zhijun Zhang ◽  
...  

Poly(phenyleneethynylene) (PPE) is a widely used functional conjugated polymer with applications ranging from organic optoelectronics and fluorescence sensors to optical imaging and theranostics. However, the fluorescence efficiency of PPE in aggregate states is generally not as good as their solution states, which greatly compromises their performance in fluorescence-related applications. Herein, we design and synthesize a series of PPE derivatives with typical aggregation-induced emission (AIE) properties. In these PPEs, the diethylamino-substituted tetraphenylethene units function as the long-wavelength AIE source and the alkyl side chains serve as the functionalization site. The obtained AIE-active PPEs with large π-conjugation show strong aggregate-state fluorescence, interesting self-assembly behaviors, inherently enhanced alkyne vibrations in the Raman-silent region of cells, and efficient antibacterial activities. The PPE nanoparticles with good cellular uptake capability can clearly and sensitively visualize the tumor region and residual tumors via their fluorescence and Raman signals, respectively, to benefit the precise tumor surgery. After post-functionalization, the obtained PPE-based polyelectrolyte can preferentially image bacteria over mammalian cells and possesses efficient photodynamic killing capability against Gram-positive and drug-resistant bacteria. This work provides a feasible design strategy for developing multifunctional conjugated polymers with multimodal imaging capability as well as photodynamic antimicrobial ability.


Sign in / Sign up

Export Citation Format

Share Document