DNA polymerase β of Leishmania donovani is important for infectivity and it protects the parasite against oxidative damage

2019 ◽  
Vol 124 ◽  
pp. 291-303 ◽  
Author(s):  
Mohd. Imran Khan ◽  
Anshul Mishra ◽  
Pravin K. Jha ◽  
Kumar Abhishek ◽  
Rachna Chaba ◽  
...  
2021 ◽  
pp. 096032712110227
Author(s):  
Z He ◽  
H Xian ◽  
M Tang ◽  
Y Chen ◽  
Z Lian ◽  
...  

Methyl tert-butyl ether (MTBE), a widely used gasoline additive and a ubiquitous environmental pollutant in many countries and regions, can cause various kinds of toxic effects on human health. However, the molecular mechanism underlying its toxic effects remains elusive. The present study aimed to explore the cytotoxicity, DNA damage and oxidative damage effects of MTBE on human bronchial epithelial cells (16HBE) and the possible role of DNA polymerase β (pol-β) in this process. RNA interference (RNAi) was used to obtain pol-β gene knocked-down cells (pol-β−). CCK-8 assay was adopted to analyze the cell viability. Alkaline single-cell gel electrophoresis (SCGE) was performed to detect the DNA damage effects of MTBE. The enzyme activity of GSH-Px, SOD, CAT and the level of MDA were assessed. The data indicated that when treated with MTBE at the concentration exceeding 50 μmol/L and for the time exceeding 24 h, the pol-β− exhibited significantly decreased cell viability and increased DNA damage effects, as compared to the control ( P < 0.05). Furthermore, there was significant difference in the levels of GSH-pX, SOD, CAT and MDA between the pol-β− and the control ( P < 0.05). Our investigation suggests that MTBE can cause obvious cytotoxicity, DNA damage and oxidative damage effects on 16HBE cells. DNA polymerase β may be involved in protecting 16HBE cells from the toxic effects induced by MTBE exposure. These findings provide a novel insight into the molecular mechanism underlying the toxic effects of MTBE on human cells.


2005 ◽  
Vol 389 (1) ◽  
pp. 13-17 ◽  
Author(s):  
Ekaterina SMIRNOVA ◽  
Magali TOUEILLE ◽  
Enni MARKKANEN ◽  
Ulrich HÜBSCHER

The human checkpoint sensor and alternative clamp Rad9–Rad1–Hus1 can interact with and specifically stimulate DNA ligase I. The very recently described interactions of Rad9–Rad1–Hus1 with MutY DNA glycosylase, DNA polymerase β and Flap endonuclease 1 now complete our view that the long-patch base excision machinery is an important target of the Rad9–Rad1–Hus1 complex, thus enhancing the quality control of DNA.


DNA Repair ◽  
2021 ◽  
Vol 99 ◽  
pp. 103050
Author(s):  
Beverly A. Baptiste ◽  
Stephanie L. Baringer ◽  
Tomasz Kulikowicz ◽  
Joshua A. Sommers ◽  
Deborah L. Croteau ◽  
...  

Oncogene ◽  
2021 ◽  
Author(s):  
Reem Ali ◽  
Adel Alblihy ◽  
Islam M. Miligy ◽  
Muslim L. Alabdullah ◽  
Mansour Alsaleem ◽  
...  

AbstractTargeting PARP1 [Poly(ADP-Ribose) Polymerase 1] for synthetic lethality is a new strategy for BRCA germ-line mutated or platinum sensitive ovarian cancers. However, not all patients respond due to intrinsic or acquired resistance to PARP1 inhibitor. Development of alternative synthetic lethality approaches is a high priority. DNA polymerase β (Polβ), a critical player in base excision repair (BER), interacts with PARP1 during DNA repair. Here we show that polβ deficiency is a predictor of platinum sensitivity in human ovarian tumours. Polβ depletion not only increased platinum sensitivity but also reduced invasion, migration and impaired EMT (epithelial to mesenchymal transition) of ovarian cancer cells. Polβ small molecular inhibitors (Pamoic acid and NSC666719) were selectively toxic to BRCA2 deficient cells and associated with double-strand breaks (DSB) accumulation, cell cycle arrest and increased apoptosis. Interestingly, PARG [Poly(ADP-Ribose) Glycohydrolase] inhibitor (PDD00017273) [but not PARP1 inhibitor (Olaparib)] was synthetically lethal in polβ deficient cells. Selective toxicity to PDD00017273 was associated with poly (ADP-ribose) accumulation, reduced nicotinamide adenine dinucleotide (NAD+) level, DSB accumulation, cell cycle arrest and increased apoptosis. In human tumours, polβ-PARG co-expression adversely impacted survival in patients. Our data provide evidence that polβ targeting is a novel strategy and warrants further pharmaceutical development in epithelial ovarian cancers.


Biochemistry ◽  
2012 ◽  
Vol 51 (43) ◽  
pp. 8491-8501 ◽  
Author(s):  
Keriann Oertell ◽  
Yue Wu ◽  
Valeria M. Zakharova ◽  
Boris A. Kashemirov ◽  
David D. Shock ◽  
...  

2010 ◽  
Vol 67 (21) ◽  
pp. 3633-3647 ◽  
Author(s):  
Samuel H. Wilson ◽  
William A. Beard ◽  
David D. Shock ◽  
Vinod K. Batra ◽  
Nisha A. Cavanaugh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document