Effects of Panax ginseng polysaccharides on the gut microbiota in mice with antibiotic-associated diarrhea

2019 ◽  
Vol 124 ◽  
pp. 931-937 ◽  
Author(s):  
Shanshan Li ◽  
Yuli Qi ◽  
Lixue Chen ◽  
Di Qu ◽  
Zhiman Li ◽  
...  
2020 ◽  
Vol 11 (12) ◽  
pp. 10839-10851
Author(s):  
Zhi-jie Ma ◽  
Huan-jun Wang ◽  
Xiao-jing Ma ◽  
Yue Li ◽  
Hong-jun Yang ◽  
...  

Ginger extract showed beneficial effects on rats with antibiotic-associated diarrhea, and the underlying mechanism might be associated with the recovery of gut microbiota and intestinal barrier function.


2021 ◽  
Vol 267 ◽  
pp. 113594
Author(s):  
Qingsong Qu ◽  
Fang Yang ◽  
Chongyan Zhao ◽  
Xing Liu ◽  
Pengshuo Yang ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Mingxiao Cui ◽  
Yu Wang ◽  
Jeevithan Elango ◽  
Junwen Wu ◽  
Kehai Liu ◽  
...  

The present study investigated whether the purified polysaccharide from Cereus sinensis (CSP-1) had beneficial effects on mice with antibiotic-associated diarrhea (AAD). The effects of CSP-1 on gut microbiota were evaluated by 16S rRNA high-throughput sequencing. Results showed that CSP-1 increased the diversity and richness of gut microbiota. CSP-1 enriched Phasecolarctobacterium, Bifidobacterium and reduced the abundance of Parabacteroides, Sutterella, Coprobacillus to near normal levels, modifying the gut microbial community. Microbial metabolites were further analyzed by gas chromatography-mass spectrometry (GC-MS). Results indicated CSP-1 promoted the production of various short-chain fatty acids (SCFAs) and significantly improved intestinal microflora dysfunction in AAD mice. In addition, enzyme linked immunosorbent assay and hematoxylin-eosin staining were used to assess the effects of CSP-1 on cytokine levels and intestinal tissue in AAD mice. Results demonstrated that CSP-1 inhibited the secretion of interleukin-2 (IL-2), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) and improved the intestinal barrier. Correspondingly, the daily records also showed that CSP-1 promoted recovery of diarrhea status score, water intake and body weight in mice with AAD. In short, CSP-1 helped alleviate AAD by regulating the inflammatory cytokines, altering the composition and richness of intestinal flora, promoting the production of SCFAs, improving the intestinal barrier as well as reversing the dysregulated microbiota function.


2020 ◽  
Author(s):  
Haoqing Shao ◽  
Chenyang Zhang ◽  
Nenqun Xiao ◽  
Zhoujin Tan

Abstract Background: Antibiotic-associated diarrhea (AAD), defined as diarrhea that occurs in association with the administration of antibiotics and without another clear etiology, is one of the most commonly adverse drug events of antibiotics therapy. We established a diarrhea model induced by gentamycin and cefradine to investigate the microbiota characteristics in the intestinal lumen of mice with AAD and provide insights into noteworthy bacteria related to gentamicin and cefradine-associated diarrhea.Results: The number of OTUs in the model group and the normal group was 983 and 2107, respectively, and 872 identical OTUs were shared between two groups. Species richness and species diversity of intestinal microbe were altered by antibiotics administration. The dominant phyla of AAD mice were Firmicutes (52.63%) and Proteobacteria (46.37%). The abundance of 8 genera, Ruminococcus, Blautia, Enterococcus, Eubacterium, Clostridium, Coprococcus, Aerococcus, and Pseudomonas, increased significantly, and the abundance of 3 genera, Prevotella, Bacteroides, and Adlercreutzia, decreased significantly in the model group compared to those in the control group (p < 0.05). LEfSe analysis showed that Enterococcus, Eubacterium, Ruminococcus, and Blautia were the key differential genera in the model group.Conclusions: The bacterial diversity of the intestinal lumen was diminished after gentamicin and cefradine administration. The alterations in the abundance and composition of gut microbiota further led to the dysfunction of gut microbiota. More specifically, gentamicin and cefradine significantly increased the abundance of the opportunistic pathogens, of which Enterococcus and Clostridium were the most prominent and most worthy of attention.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Haoqing Shao ◽  
Chenyang Zhang ◽  
Nenqun Xiao ◽  
Zhoujin Tan

Abstract Background Antibiotic-associated diarrhea (AAD), defined as diarrhea that occurs in association with the administration of antibiotics and without another clear etiology, is one of the most common adverse drug events of antibiotics therapy. We established a diarrhea model induced by gentamycin and cefradine to investigate the microbiota characteristics in the intestinal lumen of mice with AAD and provide insights into noteworthy bacteria related to gentamicin and cefradine-associated diarrhea. Results The number of OTUs in the model group and the normal group was 983 and 2107, respectively, and 872 identical OTUs were shared between two groups. Species richness and species diversity of intestinal microbe were altered by antibiotics administration. PCoA showed a clear separation between AAD and health control. The dominant phyla of AAD mice were Firmicutes (52.63%) and Proteobacteria (46.37%). Among the genus with top 20 abundance, the relative abundance of 7 genera, Ruminococcus, Blautia, Enterococcus, Eubacterium, Clostridium, Coprococcus, and Aerococcus, were enriched in the model group. Based upon the LEfSe analysis, Enterococcus, Eubacterium, Ruminococcus, and Blautia were identified as potential biomarkers for AAD. Conclusions The bacterial diversity of the intestinal lumen was diminished after gentamicin and cefradine administration. The alterations in the abundance and composition of gut microbiota further led to the dysfunction of gut microbiota. More specifically, gentamicin and cefradine significantly increased the abundance of the opportunistic pathogens, of which Enterococcus and Clostridium were the most prominent and most worthy of attention.


Antibiotics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 8 ◽  
Author(s):  
Shanshan Li ◽  
Yuli Qi ◽  
Duoduo Ren ◽  
Di Qu ◽  
Yinshi Sun

Astragalus membranaceus (Astragalus) is often used as a medical and food resource in China. The present study was designed to investigate the features and effects of polysaccharide from Astragalus membranaceus (WAP) on rats with antibiotic-associated diarrhea (AAD). WAP was mainly composed of glucose, galactose, arabinose and glacturonic acid, with glucan, arabinogalactan and RG-I regions, and it showed loosely irregular sheet conformation. WAP decreased the inflammatory cell infiltration of colon in AAD rats, increased propionate and butyrate production, improved metabolic levels, adjusted the diversity and composition of gut microbiota, increased the relative abundance of Pseudomonas, and decreased the relative abundance of Allobaculum and Coprococcus. In conclusion, WAP contained different types of polysaccharide regions and sheet three-dimensional conformation, while it ameliorated AAD by recovering the colon structure, adjusting the gut microbiota, and improving the SCFAs levels. The results can provide some data basis for natural products to alleviate the side effects related to antibiotics.


2018 ◽  
Vol 9 (6) ◽  
pp. 3547-3556 ◽  
Author(s):  
Yifan Sun ◽  
Shaoqiu Chen ◽  
Runmin Wei ◽  
Xie Xie ◽  
Chongchong Wang ◽  
...  

In this study, untargeted GC-TOFMS metabolomic analysis of serum, cecum and ileum intestinal contents was conducted to understand the effect of the long-term intake of Ginseng extracts.


Sign in / Sign up

Export Citation Format

Share Document