Functional analyses of xylanolytic enzymes involved in xylan degradation and utilization in Neurospora crassa

2021 ◽  
Vol 169 ◽  
pp. 302-310
Author(s):  
Ruijie Wang ◽  
Manabu Arioka
2000 ◽  
Vol 30 (3) ◽  
pp. 197-205 ◽  
Author(s):  
N. Mir-Rashed ◽  
D.J. Jacobson ◽  
M.R. Dehghany ◽  
O.C. Micali ◽  
M.L. Smith

1998 ◽  
Vol 64 (10) ◽  
pp. 3615-3619 ◽  
Author(s):  
Noël N. M. E. van Peij ◽  
Marco M. C. Gielkens ◽  
Ronald P. de Vries ◽  
Jaap Visser ◽  
Leo H. de Graaff

ABSTRACT The expression of genes encoding enzymes involved in xylan degradation and two endoglucanases involved in cellulose degradation was studied at the mRNA level in the filamentous fungusAspergillus niger. A strain with a loss-of-function mutation in the xlnR gene encoding the transcriptional activator XlnR and a strain with multiple copies of this gene were investigated in order to define which genes are controlled by XlnR. The data presented in this paper show that the transcriptional activator XlnR regulates the transcription of thexlnB, xlnC, and xlnD genes encoding the main xylanolytic enzymes (endoxylanases B and C and β-xylosidase, respectively). Also, the transcription of the genes encoding the accessory enzymes involved in xylan degradation, including α-glucuronidase A, acetylxylan esterase A, arabinoxylan arabinofuranohydrolase A, and feruloyl esterase A, was found to be controlled by XlnR. In addition, XlnR also activates transcription of two endoglucanase-encoding genes, eglA andeglB, indicating that transcriptional regulation by XlnR goes beyond the genes encoding xylanolytic enzymes and includes regulation of two endoglucanase-encoding genes.


Author(s):  
Karen S. Howard ◽  
H. D. Braymer ◽  
M. D. Socolofsky ◽  
S. A. Milligan

The recently isolated cell wall mutant slime X of Neurospora crassa was prepared for ultrastructural and morphological comparison with the cell wall mutant slime. The purpose of this article is to discuss the methods of preparation for TEM and SEM observations, as well as to make a preliminary comparison of the two mutants.TEM: Cells of the slime mutant were prepared for thin sectioning by the method of Bigger, et al. Slime X cells were prepared in the same manner with the following two exceptions: the cells were embedded in 3% agar prior to fixation and the buffered solutions contained 5% sucrose throughout the procedure.SEM: Two methods were used to prepare mutant and wild type Neurospora for the SEM. First, single colonies of mutant cells and small areas of wild type hyphae were cut from solid media and fixed with OSO4 vapors similar to the procedure used by Harris, et al. with one alteration. The cell-containing agar blocks were dehydrated by immersion in 2,2-dimethoxypropane (DMP).


2017 ◽  
Vol 17 (2) ◽  
pp. 166-173 ◽  
Author(s):  
Joseph M. Lambert ◽  
Crystal I. Finley ◽  
Carmen E. Caruthers
Keyword(s):  

2018 ◽  
Vol 7 (3) ◽  
Author(s):  
Budiasih Wahyuntari., dkk

Isolate I-5 was isolated from Ciseeng hot spring, West Java and was identified as Bacillus licheniformis I-5. The isolate produces extracellular xylanolytic enzymes on Oatspelt containing Luria broth agar medium. Optimal activity of the crude enzyme was  observed at 50ºC and pH 7. The effect of sodium dodecyl sulphate, b-mercaptoethanol and Triton-X100 were observed. Incubating the crude enzyme in 1.5% SDS and 1.5% b-mercaptoethanol at 50oC for 90 minutes then adding Triton-X100 at final concentration of 3.5% for 45 minutes only reduced 5.75% of the initial enzyme activity. SDS/PAGE and zymogram analysis showed that at least two xylanolytic enzymes presence in the crude enzyme. The molecular weight of the enzyme was estimated about 127 and 20kD. The enzyme hydrolysed xylan into xylobiose, xylotriose and other longer xylooligosaccharides. Thermal stability of the crude enzyme was observed at 50, 60, and 70oC and pH 7 and 8. The results showed that the half time of the crude enzyme incubated at 50, 60, and 70oC pH 7 was 2 hours 55 minutes; 2 hours 33 minutes and 1 hour 15 minutes respectively. The half time at 50, 60 and 70oC, pH 8 was 2 hours 48 minutes; 1 hour 22 minutes and 1 hour 9 minutes respectively.keywords: Xilanase, Bacillus licheniformis I-5, thermal stability


Sign in / Sign up

Export Citation Format

Share Document