Feasibility study of oxidized hyaluronic acid cross-linking acellular bovine pericardium with potential application for abdominal wall repair

Author(s):  
Yang Zhao ◽  
Yanjiang Li ◽  
Xu Peng ◽  
Xiaoshuang Yu ◽  
Can Cheng ◽  
...  
Author(s):  
Marina BAKRI ◽  
Fernanda Christo LOVATO ◽  
Géssica de Mattos DIOSTI ◽  
Yorgos Luiz Santos de Graça SALLES ◽  
Paulo Henrique Brites MOREIRA ◽  
...  

ABSTRACT Background: The use of polypropylene meshes for surgical repair of the abdominal wall contributes to a reduction of the of recurrence rates of hernias or defects. However, its intra-abdominal use comes along with the formation of adhesions and several complications. The study and the search for alternative materials, including bovine pericardium, have been regarded as an option for the correction and treatment of resulting hernias with better adaptations and effectiveness. Aim: Evaluating the inflammatory process of the bovine pericardium in comparison with the inflammatory process of synthetic polypropylene mesh. Method: Bovine pericardium mesh and polypropylene mesh were placed, both on the same animal. The first group had the mesh removed for analysis on day 20, and the second group on day 40. The variables congestion, granulation, giant cells, necrosis, acute inflammation, chronic inflammation and collagen were analyzed. Results: All variables were found in greater numbers as a response to the polypropylene mesh, except for the collagen, which, on day 40, was greater in response to the bovine pericardium mesh. Conclusion: The data in this study suggest that there is less inflammatory reaction in response to bovine pericardium mesh when compared to polypropylene mesh.


Author(s):  
Daniel Eberli ◽  
Sergio Rodriguez ◽  
Anthony Atala ◽  
James J. Yoo

Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 948
Author(s):  
Nicola Zerbinati ◽  
Sabrina Sommatis ◽  
Cristina Maccario ◽  
Maria Chiara Capillo ◽  
Giulia Grimaldi ◽  
...  

(1) Background: Injectable hyaluronic acid (HA) dermal fillers are used to restore volume, hydration and skin tone in aesthetic medicine. HA fillers differ from each other due to their cross-linking technologies, with the aim to increase mechanical and biological activities. One of the most recent and promising cross-linkers is polyethylene glycol diglycidyl ether (PEGDE), used by the company Matex Lab S.p.A., (Brindisi, Italy) to create the HA dermal filler PEGDE family. Over the last few years, several studies have been performed to investigate the biocompatibility and biodegradability of these formulations, but little information is available regarding their matrix structure, rheological and physicochemical properties related to their cross-linking technologies, the HA content or the degree of cross-linking. (2) Methods: Seven different injectable HA hydrogels were subjected to optical microscopic examination, cohesivity evaluation and rheological characterization in order to investigate their behavior. (3) Results: The analyzed cross-linked dermal fillers showed a fibrous “spiderweb-like” matrix structure, with each medical device presenting different and peculiar rheological features. Except for HA non cross-linked hydrogel 18 mg/mL, all showed an elastic and cohesive profile. (4) Conclusions: The comparative analysis with other literature works makes a preliminary characterization of these injectable medical devices possible.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3857
Author(s):  
Tanveer Ahmed Shaik ◽  
Alba Alfonso-Garcia ◽  
Martin Richter ◽  
Florian Korinth ◽  
Christoph Krafft ◽  
...  

Biomaterials used in tissue engineering and regenerative medicine applications benefit from longitudinal monitoring in a non-destructive manner. Label-free imaging based on fluorescence lifetime imaging (FLIm) and Raman spectroscopy were used to monitor the degree of genipin (GE) cross-linking of antigen-removed bovine pericardium (ARBP) at three incubation time points (0.5, 1.0, and 2.5 h). Fluorescence lifetime decreased and the emission spectrum redshifted compared to that of uncross-linked ARBP. The Raman signature of GE-ARBP was resonance-enhanced due to the GE cross-linker that generated new Raman bands at 1165, 1326, 1350, 1380, 1402, 1470, 1506, 1535, 1574, 1630, 1728, and 1741 cm−1. These were validated through density functional theory calculations as cross-linker-specific bands. A multivariate multiple regression model was developed to enhance the biochemical specificity of FLIm parameters fluorescence intensity ratio (R2 = 0.92) and lifetime (R2 = 0.94)) with Raman spectral results. FLIm and Raman spectroscopy detected biochemical changes occurring in the collagenous tissue during the cross-linking process that were characterized by the formation of a blue pigment which affected the tissue fluorescence and scattering properties. In conclusion, FLIm parameters and Raman spectroscopy were used to monitor the degree of cross-linking non-destructively.


2017 ◽  
Vol 39 ◽  
pp. 136-139
Author(s):  
Francesca Ceci ◽  
Linda D’Amore ◽  
Maria Romana Grimaldi ◽  
Elena Annesi ◽  
Domenico Tuscano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document