Bio-conjugation of anti-human CD3 monoclonal antibodies to magnetic nanoparticles by using cyanogen bromide: A potential for cell sorting and noninvasive diagnosis

Author(s):  
Nastaran Moradi ◽  
Samad Muhammadnejad ◽  
Hamid Delavari ◽  
Negin Pournouri ◽  
Mohammad Ali Oghabian ◽  
...  
Author(s):  
Hyuk-Mi Lee ◽  
Hwan-Goo Kang

AbstractTo develop a new simple and simultaneous purification method for mycotoxins in feeds and grains, magnetic nanoparticles (MNPs) conjugated with monoclonal antibodies (mAbs) against mycotoxins were used to separate aflatoxin B1 (AFB1), zearalenone (ZEA) and deoxynivalenol (DON). For a single spike of each mycotoxin into the buffer solution (16% MeOH in PBS), mean recoveries were 93.1–95.0% for AFB1 (5–20 ng/mL spiked), 87.2–96.0% for ZEA (125–500 ng/mL spiked) and 75.2–96.9% for DON (250–1,000 ng/mL spiked) by HPLC and ELISA. Recoveries of AFB1 (20 ng/mL) and ZEA (500 ng/mL) simultaneously spiked into the buffer solution were 87.0 and 99.8%, respectively. Recovery rates of AFB1/DON and DON/ZEA spiked simultaneously were 86.2%/76.6% and 92.0%/86.7%, respectively, at concentrations of 20 ng/mL AFB1, 500 ng/mL ZEA, and 1,000 ng/mL DON. Recoveries using the novel mAb–MNP conjugated system in a buffer solution simultaneously spiked with AFB1, ZEA and DON were 82.5, 94.6 and 73.4%, respectively. Recoveries of DON in animal feed were 107.7–132.5% at concentrations of 250–1,000 ng/g spiked in feed. The immunoaffinity chromatography (IAC) clean-up method was compared with the purification method using novel mAb–MNP. After fortification of animal feed with AFB1 (5, 10 and 20 ng/g feed) and ZEA (125, 250 and 500 ng/g feed), AFB1 and ZEA were purified using both the methods. In the case of the novel mAb-MNP conjugated system, mean recoveries for AFB1 were 89.4, 73.1 and 88.3% at concentrations of 5, 10 and 20 ng/g feed, respectively. For ZEA, mean recoveries were 86.7, 85.9 and 79.1% at concentrations of 125, 250 and 500 ng/g, respectively. For IAC purification, recoveries were 42.9–45.1% for AFB1 and 96.8–103.2% for ZEA. In conclusion, the present purification method using monoclonal antibodies conjugated to MNPs can be used for simple and simultaneous purification of mycotoxins from feed and maize.


2017 ◽  
Vol 89 (7) ◽  
pp. 4007-4012 ◽  
Author(s):  
Martin Dippong ◽  
Peter Carl ◽  
Christine Lenz ◽  
Jörg A. Schenk ◽  
Katrin Hoffmann ◽  
...  

Blood ◽  
1989 ◽  
Vol 73 (7) ◽  
pp. 1951-1956
Author(s):  
ED Ball ◽  
J McDermott ◽  
JD Griffin ◽  
FR Davey ◽  
R Davis ◽  
...  

Monoclonal antibodies (MoAbs) have been prepared recently that recognize the three cell-surface receptors for the Fc portion of immunoglobulin (Ig), termed Fc gamma RI (MoAb 32.2), Fc gamma R II (MoAb IV-3), and Fc gamma R III (MoAb 3G8) that are expressed on selected subsets of non-T lymphocyte peripheral blood leukocytes. In the blood, Fc gamma R I is expressed exclusively on monocytes and macrophages, Fc gamma R II on granulocytes, mononuclear phagocytes, platelets, and B cells, and Fc gamma R III on granulocytes and natural killer (NK) cells. We have examined the expression of these molecules on normal bone marrow (BM) cells and on leukemia cells from the blood and/or BM in order to determine their normal ontogeny as well as their distribution on leukemic cells. BM was obtained from six normal volunteers and from 170 patients with newly diagnosed acute leukemia. Normal BM cells were found to express Fc gamma R I, II, and III with the following percentages: 40%, 58%, and 56%, respectively. Cell sorting revealed that both Fc gamma R I and Fc gamma R II were detectable on all subclasses of myeloid precursors as early as myeloblasts. Cell sorting experiments revealed that 66% of the granulocyte-monocyte colony-forming cells (CFU-GM) and 50% of erythroid burst-forming units (BFU-E) were Fc gamma R II positive with only 20% and 28%, respectively, of CFU-GM and BFU-E were Fc gamma R I positive. Acute myeloid leukemia (AML) cells expressed the three receptors with the following frequency (n = 146): Fc gamma R I, 58%; Fc gamma R II, 67%; and Fc gamma R III, 26% of patients. Despite the fact that Fc gamma R I is only expressed on monocytes among blood cells, AML cells without monocytoid differentiation (French-American-British [FAB]M1, M2, M3, M6) were sometimes positive for this receptor. However, Fc gamma R I was highly correlated with FAB M4 and M5 morphology (P less than .001). Fc gamma R II was also correlated with FAB M4 and M5 morphology (P = .003). Cells from 11 patients with acute lymphoblastic leukemia were negative for Fc gamma R I, but six cases were positive for Fc gamma R II and III (not the same patients). These studies demonstrate that Ig Fc gamma R are acquired during normal differentiation in the BM at or before the level of colony-forming units. In addition, we show that acute leukemia cells commonly express Fc gamma R.


Blood ◽  
1989 ◽  
Vol 73 (7) ◽  
pp. 1951-1956 ◽  
Author(s):  
ED Ball ◽  
J McDermott ◽  
JD Griffin ◽  
FR Davey ◽  
R Davis ◽  
...  

Abstract Monoclonal antibodies (MoAbs) have been prepared recently that recognize the three cell-surface receptors for the Fc portion of immunoglobulin (Ig), termed Fc gamma RI (MoAb 32.2), Fc gamma R II (MoAb IV-3), and Fc gamma R III (MoAb 3G8) that are expressed on selected subsets of non-T lymphocyte peripheral blood leukocytes. In the blood, Fc gamma R I is expressed exclusively on monocytes and macrophages, Fc gamma R II on granulocytes, mononuclear phagocytes, platelets, and B cells, and Fc gamma R III on granulocytes and natural killer (NK) cells. We have examined the expression of these molecules on normal bone marrow (BM) cells and on leukemia cells from the blood and/or BM in order to determine their normal ontogeny as well as their distribution on leukemic cells. BM was obtained from six normal volunteers and from 170 patients with newly diagnosed acute leukemia. Normal BM cells were found to express Fc gamma R I, II, and III with the following percentages: 40%, 58%, and 56%, respectively. Cell sorting revealed that both Fc gamma R I and Fc gamma R II were detectable on all subclasses of myeloid precursors as early as myeloblasts. Cell sorting experiments revealed that 66% of the granulocyte-monocyte colony-forming cells (CFU-GM) and 50% of erythroid burst-forming units (BFU-E) were Fc gamma R II positive with only 20% and 28%, respectively, of CFU-GM and BFU-E were Fc gamma R I positive. Acute myeloid leukemia (AML) cells expressed the three receptors with the following frequency (n = 146): Fc gamma R I, 58%; Fc gamma R II, 67%; and Fc gamma R III, 26% of patients. Despite the fact that Fc gamma R I is only expressed on monocytes among blood cells, AML cells without monocytoid differentiation (French-American-British [FAB]M1, M2, M3, M6) were sometimes positive for this receptor. However, Fc gamma R I was highly correlated with FAB M4 and M5 morphology (P less than .001). Fc gamma R II was also correlated with FAB M4 and M5 morphology (P = .003). Cells from 11 patients with acute lymphoblastic leukemia were negative for Fc gamma R I, but six cases were positive for Fc gamma R II and III (not the same patients). These studies demonstrate that Ig Fc gamma R are acquired during normal differentiation in the BM at or before the level of colony-forming units. In addition, we show that acute leukemia cells commonly express Fc gamma R.


Blood ◽  
1983 ◽  
Vol 61 (3) ◽  
pp. 580-588
Author(s):  
T Hoang ◽  
D Gilmore ◽  
D Metcalf ◽  
S Cobbold ◽  
S Watt ◽  
...  

Primitive hemopoietic progenitor cells from adult mouse marrow have been substantially enriched by virtue of a negative selection procedure with monoclonal antibodies. It has been possible to segregate erythroid progenitor cells at distinct stages of differentiation on the basis of their cell surface antigens. This has been achieved with two monoclonal antibodies reactive with the mature elements of bone marrow. YBM 34.3 binds to a heat-stable antigen expressed on B lymphocytes, neutrophils, and cells of the erythroid lineage. YBM 6.1 reacts with cells of the neutrophil, eosinophil, and monocyte series but does not bind to colony- forming cells. Separation is achieved by indirect immunoadsorption (panning) with YBM 34.3 on Protein-A-coated plastic plates followed by FACS II cell sorting with YBM 6.1. The combined procedures yield a marrow population containing 58% immature cells (blasts, promyelocytes, and myelocytes) and 9.5% clonogenic cells. In addition, differential binding of YBM 34.3 can be used to segregate erythroid progenitor cells at distinct stages of differentiation (day 7 BFU-E, day 5 BFU-E and CFU- E) either by cell sorting or panning. It is shown that both techniques give a comparable degree of resolution of the different cell types with, however, an appreciable advantage of panning over cell sorting in allowing the rapid handling of large numbers of cells.


Blood ◽  
1984 ◽  
Vol 63 (2) ◽  
pp. 326-334
Author(s):  
T Papayannopoulou ◽  
M Brice ◽  
T Yokochi ◽  
PS Rabinovitch ◽  
D Lindsley ◽  
...  

The characteristics of nine monoclonal antibodies (MoAbs) produced using the uninduced cells of a human erythroleukemia line (HEL) as immunogen are described. These antibodies were grouped into four categories by their differences in recognition of normal cells and cells of hemopoietic cell lines. The four MoAbs of group A recognize determinants that are expressed in a large proportion of normal bone marrow cells and other mature cells. The two MoAbs of group B (53/5, 53/6) and the two MoAbs of group C (54/23, 54/39) recognize small proportions of bone marrow cells, whereas the single MoAb of group D (53/10) essentially recognizes only HEL cells. Competition experiments revealed two pairs of competing Abs (53/5 and 53/6; 54/23 and 54/39). In complement-dependent cytotoxicity of progenitors, 53/6 produced 90%- 100% inhibition of CFU-E, BFU-E, and CFU-C growth; 54/39 30%–60% inhibition of BFU-E and CFU-C growth; 53/10 produced a variable degree of inhibition of CFU-E and BFU-E. Cell sorting using 53/6 resulted in approximately a 10–12-fold enrichment of CFU-E, BFU-E, and CFU-C among the positive cells. Cell sorting with 54/23 resulted in recovery of over 90% of BFU-E and 100% of CFU-C among the 23.5% of sorted cells showing strong or intermediate positivity. These findings suggest that HEL cells possess surface characteristics that are expressed in several classes of hemopoietic progenitors.


Blood ◽  
1983 ◽  
Vol 62 (1) ◽  
pp. 124-132 ◽  
Author(s):  
RG Andrews ◽  
B Torok-Storb ◽  
ID Bernstein

Abstract Within the hematopoietic system, monoclonal antibodies reactive with antigenic determinants, expressed in a lineage- and stage-restricted fashion, can be used to map myeloid differentiation. We have generated a series of monoclonal antibodies that reacts with myeloid-associated determinants on committed myeloid stem cells and their progeny. Their reactivity with peripheral blood cells was identified by immunofluorescence assays, with bone marrow cells by fluorescence- activated cell sorting, and with committed hematopoietic progenitor cells by both cytotoxic assays and fluorescence-activated cell sorting. Antibody 1G10, which has previously been reported to react with cells of the granulocytic lineage and with a minor subset of mature monocytes, was shown to react with granulocyte-macrophage colony- forming units (CFU-GM). Three antibodies not previously characterized (T5A7, L4F3, L1B2) were shown to react with both granulocytic and monocytic cells and in fluorescence-activated cell sorting studies to detectably stain granulocytic cells at different stages of maturation. These three antibodies also react with CFU-GM, two (L4F3 and L1B2) reacting with all CFU-GM, while T5A7 reacts with only a portion of the day 7 CFU-GM. Antibody L4F3 also reacts with a portion of erythroid burst-forming units (BFU-E). In contrast, the previously reported antibody 5F1, which reacts with monocytic cells, nucleated erythroid cells, and platelets, was shown to react with erythroid colony-forming units (CFU-E). Potential applications of these antibodies to studies of normal and malignant hematopoiesis are discussed.


Sign in / Sign up

Export Citation Format

Share Document