[P234]: Growth cone difference between CNS and PNS neurons in actin polymerization state and L1 expression, with special reference to their parallel and perpendicular orientations on aligned neurite bundles

2006 ◽  
Vol 24 (8) ◽  
pp. 596-596
Author(s):  
I. Nagata ◽  
J. Kimura‐Kuroda
2021 ◽  
Vol 534 ◽  
pp. 714-719
Author(s):  
Ruriko Suzuki ◽  
Yoshikazu Inoh ◽  
Satoru Yokawa ◽  
Tadahide Furuno ◽  
Naohide Hirashima

2009 ◽  
Vol 96 (12) ◽  
pp. 5130-5138 ◽  
Author(s):  
Timo Betz ◽  
Daniel Koch ◽  
Daryl Lim ◽  
Josef A. Käs

2020 ◽  
Author(s):  
Bing Sun ◽  
Xin Jiang ◽  
Rongmei Qu ◽  
Tingyu Fan ◽  
Yuchao Yang ◽  
...  

Abstract Background:Actin is an essential cellular protein that assembles into microfilaments and regulates numerous processes such as cell migration, maintenance of cell shape, and material transport. In this study, we explored the effect of actin polymerization state on the osteogenic differentiation of human adipose-derived stem cells (hASCs). Methods:The hASCs were treated with different concentrations (0, 1, 5, 10, 20, and 50 nM)of jasplakinolide (JAS), a reagent that directly polymerizes F-actin.The effects ofthe actin polymerization state on cell proliferation, apoptosis, migration, and the maturity of focal adhesion-related proteins were assessed. In addition, western blotting and alizarin red staining assays were performed to assess osteogenic differentiation. Results: These results revealed that cell proliferation and migration in the JAS (0, 1, 5, 10, and 20 nM) groupswashigher than that inthe control group andthe JAS (50 nM) group.The protein expressionof focal adhesion kinase, vinculin, paxillin, and talinwere highest in the JAS (20 nM) group, whilezyxin expression was highestinthe JAS (50 nM) group.Western blottingshowed thatosteogenic differentiation in theJAS (0, 1, 5, 10, 20, and 50 nM) groupswas enhanced compared with that in thecontrol group, and was strongest inthe JAS (50 nM) group.Conclusions: Our data suggest thatthe actinpolymerization state may promote the osteogenic differentiation of hASCs by regulating the protein expression of focal adhesion-associated proteins in a concentration-dependent manner. Our findings provide valuable information for exploring the mechanism of osteogenic differentiationin hASCs.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Bing Sun ◽  
Rongmei Qu ◽  
Tingyu Fan ◽  
Yuchao Yang ◽  
Xin Jiang ◽  
...  

Abstract Background Actin is an essential cellular protein that assembles into microfilaments and regulates numerous processes such as cell migration, maintenance of cell shape, and material transport. Methods In this study, we explored the effect of actin polymerization state on the osteogenic differentiation of human adipose-derived stem cells (hASCs). The hASCs were treated for 7 days with different concentrations (0, 1, 5, 10, 20, and 50 nM) of jasplakinolide (JAS), a reagent that directly polymerizes F-actin. The effects of the actin polymerization state on cell proliferation, apoptosis, migration, and the maturity of focal adhesion-related proteins were assessed. In addition, western blotting and alizarin red staining assays were performed to assess osteogenic differentiation. Results Cell proliferation and migration in the JAS (0, 1, 5, 10, and 20 nM) groups were higher than in the control group and the JAS (50 nM) group. The FAK, vinculin, paxillin, and talin protein expression levels were highest in the JAS (20 nM) group, while zyxin expression was highest in the JAS (50 nM) group. Western blotting showed that osteogenic differentiation in the JAS (0, 1, 5, 10, 20, and 50 nM) group was enhanced compared with that in the control group, and was strongest in the JAS (50 nM) group. Conclusions In summary, our data suggest that the actin polymerization state may promote the osteogenic differentiation of hASCs by regulating the protein expression of focal adhesion-associated proteins in a concentration-dependent manner. Our findings provide valuable information for exploring the mechanism of osteogenic differentiation in hASCs.


2016 ◽  
Vol 213 (4) ◽  
pp. 451-462 ◽  
Author(s):  
Wei Wang ◽  
Asit Rai ◽  
Eun-Mi Hur ◽  
Zeev Smilansky ◽  
Karen T. Chang ◽  
...  

Local information processing in the growth cone is essential for correct wiring of the nervous system. As an axon navigates through the developing nervous system, the growth cone responds to extrinsic guidance cues by coordinating axon outgrowth with growth cone steering. It has become increasingly clear that axon extension requires proper actin polymerization dynamics, whereas growth cone steering involves local protein synthesis. However, molecular components integrating these two processes have not been identified. Here, we show that Down syndrome critical region 1 protein (DSCR1) controls axon outgrowth by modulating growth cone actin dynamics through regulation of cofilin activity (phospho/dephospho-cofilin). Additionally, DSCR1 mediates brain-derived neurotrophic factor–induced local protein synthesis and growth cone turning. Our study identifies DSCR1 as a key protein that couples axon growth and pathfinding by dually regulating actin dynamics and local protein synthesis.


Author(s):  
Xubin Hou ◽  
Motohiro Nozumi ◽  
Harukazu Nakamura ◽  
Michihiro Igarashi ◽  
Sayaka Sugiyama

During brain development, axon outgrowth and its subsequent pathfinding are reliant on a highly motile growth cone located at the tip of the axon. Actin polymerization that is regulated by actin-depolymerizing factors homology (ADF-H) domain-containing family drives the formation of lamellipodia and filopodia at the leading edge of growth cones for axon guidance. However, the precise localization and function of ADF-H domain-containing proteins involved in axon extension and retraction remain unclear. We have previously shown that transcripts and proteins of coactosin-like protein 1 (COTL1), an ADF-H domain-containing protein, are observed in neurites and axons in chick embryos. Coactosin overexpression analysis revealed that this protein was localized to axonal growth cones and involved in axon extension in the midbrain. We further examined the specific distribution of coactosin and cofilin within the growth cone using superresolution microscopy, structured illumination microscopy, which overcomes the optical diffraction limitation and is suitable to the analysis of cellular dynamic movements. We found that coactosin was tightly associated with F-actin bundles at the growth cones and that coactosin overexpression promoted the expansion of lamellipodia and extension of growth cones. Coactosin knockdown in oculomotor neurons resulted in an increase in the levels of the inactive, phosphorylated form of cofilin and dysregulation of actin polymerization and axonal elongation, which suggests that coactosin promoted axonal growth in a cofilin-dependent manner. Indeed, the application of a dominant-negative form of LIMK1, a downstream effector of GTPases, reversed the effect of coactosin knockdown on axonal growth by enhancing cofilin activity. Combined, our results indicate that coactosin functions promote the assembly of protrusive actin filament arrays at the leading edge for growth cone motility.


Sign in / Sign up

Export Citation Format

Share Document